THE ROLE OF 64 - MULTI-DETECTOR COMPUTED TOMOGRAPHY SCANNERS IN EVALUATION OF CORONARY ARTERY STENTS

Essay Submitted for partial fulfillment of Master degree in Radio-diagnosis By

Ahmed Samir Hamed

M.B., B.Ch. Faculty of Medicine Cairo University

Supervised By

Prof. Dr. WAHID TANTAWY

Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

Dr AHMED SAMIR IBRAHIM

Associate Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

2010

LIST OF ABBREVIATIONS

ACS Acute Coronary Syndrome **Automatic Exposure Control AEC** AM Acute Marginal branch Acute Myocardial Infarction **AMI BMS** Bare Metal Stent Coronary Artery Bypass Graft CABG CAD Coronary Artery Disease Congenital Heart Disease **CHD** Congestive Heart Failure **CHF** CF **Conversion Factor** CS **Coronary Sinus** Computed Tomography Angiography **CTA CTDI** Computed tomography does index **Drug-Eluting Stents DES DLP Dose Length Product ECG** Electro-Cardiogram **EDRF** Endothelial derived relaxing factor **GCV** Great Cardiac Vein **ISR** Instent restenosis **IVUS** Intra Vascular Ultrasound LAD Left Anterior Descending Artery LCA Left Coronary Artery LCx Left Circumflex artery **LMT** Left Main Trunk LV Left Ventricle **MDCT** Multi-Detector Computed Tomography Multi-Slice Computed Tomography **MSCT** Multiplanar Reconstruction **MPR Maximal Intensity Projection MIP MITI** Myocardial Infarction Triage and Intervention

Obtuse Marginal

OM

PDA	Posterior descending artery				
PDAY	Pathobiologic Determinants of Atherosclerosis in				
	Youth				
PLA	Posterolateral artery				
PTCA	Percutaneous Transluminal Coronary Angioplasty				
QCA	Quantitative Coronary Analysis				
RBS	Random Blood Sugar				
RCA	Right Coronary Artery				
RI	Ramus Intermedius artery				
RV	Right Ventricle				
SCAD	Spontaneous Coronary Artery Dissection				
SFOV	Scan Field Of View				
STEMI	ST-elevation myocardial infarction				
SVG	Saphenous vein graft				
TCFA	Thin Fibrous Cap Atheroma				
TR	Temporal resolution				
VR	Volume Rendering				

INDEX OF TABLES

Number	Table number	Page number	<u>Content</u>			
	Chapter 2: Physics of MDCT-64 CT scanners					
1	2.1	32	Conversion factors for different regional CT exams			
2	2.2	33	Effective doses for different radiological examinations.			
3	2.3	34	Organ radiation dose from various cardiological diagnostic examinations.			
Chapter 3: Radiological Anatomy Of The Coronary Artery						
4	3.1	62	Demonstration of the segmental anatomy of the coronary arteries			
5	3.2	63	Congenital coronary artery abnormalities			
Chapter 4: Radiological Pathophysiology Of CAD						
6	4.1	80	A definition of advanced types of atherosclerotic lesions.			
Chapte	Chapter 5: Technique Of 64-Mdct Coronary Angiography Examination					
7	5.1	102	Contraindications to iodinated contrast agents			

8	5.2	103	Contraindications to Nitroglycerin			
9	5.3	103	Contraindications to Beta-Blockade			
<u>C</u>	Chapter 6 : Criteria For Patient Selection For Stent Placement					
10	6.1	144	Smith et al. ACC/AHA/SCAI 2005 Guideline Update for PCI			
	Chapter 8 : Imaging And Evaluation Of Stents					
10	8.1	168	Diagnostic performance of 64-slice MSCT to detect coronary in stent restenosis			
11	8.2	179	Accuracy of MSCT-64 to detect coronary stenosis >50% in comparison to QCA			

INDEX OF FIGURES

Number	Figure number	Page number	<u>Content</u>	
Chapter 2 : Physics of MDCT-64 CT scanners				
1	2.1	6	Single slice CT scanner	
2	2.2	7	X-ray absorption and signal detection	
3	2.3	9	Multislice (multi-row) detector CT	
4	2.4	10	Anatomic area evaluated in a single rotation of the X-ray tube	
5	2.5	13	Rotation time of the X-ray tube	
6	2.6	14	Prospective scanning method	
7	2.7	16	Retrospective scanning method	
8	2.8	21	Effect of temporal resolution on reconstructed images	
8	2.9	23	Isotropic voxel	
10	2.10	24	Adaptive and fixed modes of array	
11	2.11	27	Coronary CT angiography examination in an obese patient	
12	2.12	29	A typical setup of the dosimeter	
13	2.13	30	The amount of overlap of the helical path of the x-ray beam	
14	2.14	37	Snap and shoot axial acquisition	
15	2.15	39	Spiral acquisition with reduced X-ray exposure	
16	2.16	40	A 74 -year-old female patient data acquisition	
		· · · · · ·		

9	Chapter 3	: Radiolo	ogical Anatomy Of The Coronary Artery
16	3.1	45	Left coronary artery in caudal right anterior oblique (RAO) view
17	3.2	46	Anatomical relationships of left main (LM) coronary artery
18	3.3	47	Different types of left main coronary artery bifurcation
19	3.4	51	Volume-rendered image: lateral left view of left coronary artery
20	3.5	53	Anatomy of the right coronary artery (RCA)
21	3.6	55	Anatomy of the distal right coronary artery (RCA)
22	3.7	56	Normal left coronary artery
23	3.8	57	Large posterolateral branch (PL) from the right coronary artery
24	3.9	58	Anatomical dominance of the left coronary system
25	3.10	59	Posterior descending artery in a subject with left dominance
26	3.11	60	VR image shows the inferior surface of the heart
27	3.12	61	The American Heart Association division of the coronary tree
28	3.13	64	Normal and abnormal origin of the RCA
29	3.14	65	LCX with an anomalous origin
30	3.15	66	Myocardial bridging of a proximal (LAD) segment
31	3.16	68	Anomalous origin of the right coronary artery

32	3.17	70	The great cardiac vein (GCV)
	<u>Chap</u>	ter 4 : Ra	diological Pathophysiology Of CAD
33	4.1	82	Adaptive intimal thickening and intimal
			xanthoma
34	4.2	85	Pathological intimal thickening Vs atheroma
35	4.3	91	Lesions with thrombi
Chapte	er 5 : Tech	nique Of	64-Mdct Coronary Angiography Examination
36	5.1	105	Time imaging window in ECG gating procedures
37	5.2	107	Effect of sublingual nitroglycerin on the coronary vessel diameters
38	5.3	109	Patient positioning for cardiac CT
	5.4	115	High concentration of contrast agent in the left chambers
39	5.5	117	Dual syringe injector
40	5.6	120	Planimetric analysis (multi-planar reformatting, MPR) during 3D imaging
41	5.7	122	Oblique axial MIP
42	5.8	124	Fibrolipidic plaque evaluated using three- dimensional volume rendering technique
43	5.9	125	Virtual endoscopy of the coronary arteries
	<u>Chap</u>	ter 6 : Pa	tient Selection For Stent Placement
44	6.1	130	The Sirolimus eluting stent
45	6.2	131	The Taxus TM stent

46	6.3	139	V stent implantation in the left coronary artery			
47	6.4	141	Instent restenosis of a mid LAD bare metal stent			
48	6.5	142	Axial multidetector CT image of an intra-graft			
			stent and stenotic lesion			
	Chapter 7: Imaging And Evaluation Of Stents					
	T	1				
49	7.1	156	Acute stent thrombosis			
50	7.2	157	Calcified LAD with incompletely expanded stent			
51	7.3	158	Eccentric coronary aneurysm in the proximal			
			LAD			
52	7.4	159	Stent Fracture			
			A. Different stent types			
	0.4	1.0	V 1			
53	8.1	163	B. In vitro imaging of stents in contrast-enhanced			
E 1	0.2	1/5	silicon tubes			
54	8.2	165	In-stent occlusion after implantation of two stents			
55	8.3	169	in the right coronary artery Curved MPR showing a Patent stent in the LAD			
56			_			
50	8.4	171	Volume rendered image of T stent implantation at			
57	8.5	172	the left main coronary artery bifurcation Volume-rendered image of Y stent implantation			
51	0.5	1/2	at the bifurcation of the left main coronary artery			
58	8.6	173	Volume-rendered image of Crush stent placement			
30	0.0	1/3	at the circumflex-marginal artery bifurcation			
59	8.7	182	4-16-64 & 256 coverage areas of the heart			
60	8.8	183	Siemens Dual core FLASH 64-dual source CT			
UU	0.0	103	Sichichs Duai cole l'LASH 04-uuai soulce C1			

			images of stent occlusion		
	Chapter 9 : Cases				
61	9.1	187	Proximal LAD apparently patent BM stent		
62	9.2	189	Mid LAD metallic bare metal stent with an		
			instent hypodense lesion		
63	9.3	191	Occluded stent in the CX coronary artery		
64	9.4	193	Mid LAD apparently patent stent		
65	9.5	195	Proximal LAD segment almost total obstruction		
			with small distal non-interpretable stent		
66	9.6	197	CT examination of a patient after placement of a		
			drug-eluting stent in the proximal LAD		
67	9.7	199	Significant restenosis of a 3.0 mm diameter bare-		
			metal stent in the proximal LAD		
68	9.8	201	V stent implantation in the left coronary artery		
			Variation in the severity of metal-related artifacts		
69	9.9	203	at 64-section CT with variations in metallic		
			content, design, and luminal diameter of the stent		
70	9.10	205	Axial multidetector CT image of an intra-graft		
			stent and stenotic lesion		
71	9.11	207	Acute stent thrombosis		
72	9.12	209	Stent Fracture		

CHAPTER 1

INTRODUCTION TO CORONARY CT ANGIOGRAPHY

Computed tomography angiography (CTA) of the coronary arteries is a very quick and the most advanced imaging technique. Using a Multislice imaging approach together with specialized and dedicated software, CTA "freezes" cardiac movement thereby acquiring static images of the rapidly moving heart. In addition, the same approach produces contrast agent enhanced images of the coronary arteries, by employing a three dimensional technique with high spatial and temporal resolution. (*Pavone et al.*, 2009).

The advent of multislice computed tomography was a quantum leap for CT technology. When this technical innovation was first introduced, the radiological community was faced with the task of putting its advantages to use for diagnostic patient management and optimizing its clinical applications. One of the major clinical challenges was to develop this new tool for noninvasive cardiac imaging applications ranging from coronary angiography, to ventricular function analysis, to cardiac valve evaluation. (*Hamm et al.*, 2009).

The primary advantage of CT was the ability to obtain thin cross-sectional axial images, with improved spatial resolution over echocardiography, nuclear medicine, and magnetic resonance imaging. This imaging avoided superposition of three-dimensional (3-D) structures onto a planar 2-D representation, as is the problem with conventional projection X-ray (fluoroscopy). The increased contrast resolution of CT is the reason for its increase in sensitivity for atherosclerosis and coronary artery disease (CAD). (*Budoff et al.*, 2006).

CHAPTER 2

PHYSICS OF 64-MDCT SCANNERS

CARDIAC CT

The aim of cardiac CT is to provide images of the heart that are free of motion artifacts and that correspond to a specified motion phase. Only then can applications such as coronary CT angiography or coronary calcification quantification be carried out reliably and guarantee reproducible results. To achieve this goal one must be able to synchronize data acquisition and/or image reconstruction with the cardiac motion and must achieve a fairly high temporal resolution.

Synchronization is typically done using the patient ECG signal that is recorded simultaneously with CT data acquisition. Alternative approaches that derive the motion signal directly from the patient raw data or from a set of reconstructed images are in use, too.

Typical heart rates lie in the range from 40 bpm to 120 bpm and correspond to a duration of the heart cycle between 0.5 s and 1.5 s.

To avoid blurring due to heart motion it is desired to have no more than 10% of the motion cycle show up in the reconstructed images and the temporal resolution should be in the order of 50 ms to 150 ms, depending on the heart rate. Since this cannot always be achieved, high heart rates (above 70 bpm) are frequently avoided by using premedication with beta blockers. (*Kachelrieb et al.*, 2007).

FROM CONVENTIONAL TO SPIRAL CT SCANNERS

Hounsfield's first-generation scanner used a translate/rotate technology. In this methodology, an X-ray source moving laterally activated a series of single detectors before moving to another position and repeating the process. This translate/rotate process was repeated

until the entire circumference of the patient was scanned. Scan times of 4.5 min per image were required. (*Stanford et al.*, 2005).

The next step was the introduction of spiral systems, in which the tube is able to move freely in the track contained in the gantry and does not return to its initial position after each rotation. In these machines, introduced in the early 1990s, the electrical power that supplies the X-ray tube is transmitted along the same rotational track, thus avoiding both the need for long cables and a return to the start position after each rotation. "Spiral" refers to the fact that, once a continuous rotation of the tube around the patient is started, movement of the bed along the longitudinal axis creates a spiral acquisition of images along the human body instead of the axial images acquired in conventional CT. There is dramatic improvement of image quality with spiral CT in terms of speed of data acquisition and the consistency of the diagnostic information. This is due to the fact that images are not acquired on a single imaging plane X-ray absorption (axial); rather, data representative of an entire volume are reconstructed on the axial, coronal, sagital, and curved planes of the target organ. The information provided by these three-dimensional images facilitates diagnostic evaluation of the internal organs of the human body. Moreover, the development of spiral CT has allowed the development of other techniques, such as virtual endoscopy and CTA, which nowadays are routine tools in clinical practice. (Pavone et al., *2009*).