CARVEDILOL THERAPY IN CHILDREN WITH DILATED CARDIOMYOPATHY

A prospective randomized blind trial among Egyptian children

Thesis

Submitted in partial fulfillment for the requirement of M.D. Degree in Pediatrics

\mathbf{BY}

Waleed Mostafa El-Mallah

Supervised by

Prof. Dr. Salwa Sharaf El-din

Professor of Pediatrics and Pediatric Cardiology Faculty of Medicine Cairo University

Prof. Dr. Zinab Salah

Professor of Pediatrics and Pediatric Cardiology
Faculty of Medicine
Cairo University

Prof. Dr. Mohamed Meabed

Professor of Pediatrics
Head of Pediatric Department
Faculty of Medicine
Bany Swief University

2010

Abstract

Dilated cardiomyopathy (DCM) is the most common type of heart muscle disease in children. Because the cause of DCM is unknown, specific therapy is not possible and so the treatment of DCM is essentially that of congestive heart failure. This study shows that the use of carvedilol as adjunct therapy in pediatric patients with dilated cardiomyopathy improves the clinical status of the patients and both systolic and diastolic functions of the heart. 53 pediatric patients were examined and followed up for four months after being divided into two groups: study group (27 cases who received carvedilol beside the anti-failure drugs) and control group (26 cases who received placebo and anti- failure drugs i.e. digitalis, furosemide, captopril and aspirin). The end results showed that there is a significant improvement in NYHA class, FS%, LVESD and LVEDD in the patients of the study group which was not obtained in the control group.

Key Words: Carvedilol, DCM

Acknowledgement

First and foremost thanks to Allah the most merciful. Words will never be able to express my deepest appreciation and my profound gratitude to my eminent Prof. Dr. Salwa Sharaf El-din, Professor of Pediatrics and Pediatric Cardiology for her kind supervision and support. I would like to express my endless thanks and greatest appreciation to my eminent Prof. Dr. Zinab Salah, Professor of Pediatrics and Pediatric Cardiology for her kind continuous support and extremely gorgeous cooperation. I am deeply grateful to Prof. Dr. Mohamed Meabed, Professor of **Pediatrics** and **Pediatric** Hematology for his great efforts, kind patience, continuous encouragement and sympathy. I would like to give a very special tribute to Dr. Rasha Ammar, Assist. Prof. of Pediatric Cardiology for her help and support from the start of this work.

۲

List of contents

Acknowledgement	I
List of abbreviations	III
Introduction and Aim of the work	1
Review of literature	3
Patients and methods	109
Results	112
Discussion	131
Summary	149
Conclusion	151
Recommendations	152
References	153

List of abbreviations

ACE: Angiotensin Converting Enzyme.

COMET: Carvedilol or Metoprolol European Trial.

CHF: Congestive Heart Failure.

DCM: Dilated Cardiomyopathy.

EF: Ejection Fraction.

FS: Fraction Shortening.

HCM: Hypertrophic Cardiomyopathy

HF: Heart Failure.

HLA: Human Leukocyte Antigen.

IDC: Idiopathic Dilated Cardiomyopathy.

LVEDD: Left Ventricular End Diastolic Dimension.

LVESD: Left Ventricular End Systolic Dimension.

MR: Mitral Regurgitation.

NYHA functional class: New York Heart

Association functional class.

PG: Prostaglandin.

RCM: Restrictive Cardiomyopathy.

TNF: Tumor Necrosis Factor.

Introduction and Aim of the Work

INTRODUCTION

Heart failure (HF) can be defined as a clinical syndrome in which the heart is unable to adequately fulfill its pumping function and cannot supply enough oxygenated blood to meet demand necessary for normal tissue metabolism, including that necessary for growth and development. Standing out among the principal etiologies of childhood heart failure are congenital heart diseases, rheumatic disease, arrhythmia, myocarditis and dilated cardiomyopathy (DCM) [Vitor M. P. Azevedo, et al., 2005].

the World Health Organization, According to DCM is characterized by dilatation and inadequate contraction of the left ventricle or of both ventricles. It can be idiopathic, familial or genetic, associated or not with an innate error of metabolism, viral and/or immunological, alcoholic/toxic or associated with recognized cardiovascular diseases in which the degree of myocardial dysfunction cannot be explained by the abnormal load conditions or by ischemic damage. Histology is non-specific. Presentation is generally by heart failure, which is normally progressive. Arrhythmia, thromboembolism and sudden death are common and may occur at any stage of the disease [Vitor M. P. Azevedo, et al., 2005].

Because the cause of dilated cardiomyopathy (DCM) is unknown, specific therapy is not possible and so the treatment of DCM is essentially that of congestive heart failure [Bruns et al., 2001].

It was thought that Carvedilol, in addition to standard therapy for dilated cardiomyopathy in children improves cardiac function and symptoms; it is well tolerated, with minimal adverse effects, but close monitoring is necessary as it might worsen congestive heart failure and precipitate asthma. Control studies are necessary to assess the effect of carvedilol on mortality and hospitalization rates [Rusconi et al., 2004].

Objective and Aim of the work

This study aims to assess the role of Carvedilol, which is a beta-blocker in the treatment of children with dilated cardiomyopathy, and to demonstrate its effects and tolerability.

Review of Literature

Cardiomyopathies

Definition:

Cardiomyopathies are heart muscle disorders that affect all chambers of the heart. The ventricular systolic function, diastolic function, or both functions are disrupted leading to an inadequate blood flow to organs and tissues of the body [Towbin, et al., 2006].

Classification:

Cardiomyopathy was classified from a functional standpoint into:

- 1- Dilated cardiomyopathy [DCM], most common form, characterized by ventricular dilatation, hypocontractile to variable degrees and systolic dysfunction as the main clinical feature producing signs and symptoms of congestive heart failure. Most forms of secondary cardiomyopathy are of this type.
- 2- Hypertrophic cardiomyopathy [HCM], formerly known as idiopathic hypertrophic sub-aortic stenosis, characterized by left ventricular hypertrophy that may be asymetric leading to symptoms of left ventricular outflow tract obstruction, systolic function is usually preserved however, there is a diastolic dysfunction or arrhythmias which result in sudden death.
- 3- Restrictive cardiomyopathy [RCM], with impaired diastolic filling, markedly dilated atria with generally normal ventricular dimensions and systolic function. Symptoms result from pulmonary and right-

sided systemic venous congestion. Syncope may also be a presenting feature.

4- Arrhythmogenic right ventricular cardiomyopathy (ARVC) arises from an electrical disturbance of the heart in which heart muscle is replaced by fibrous scar tissue. The right ventricle is generally most affected.

5- unclassified if it had features of more than one functional type.

[Friedberg et al., 2008].

Although the World Health Organization classifies acute viral myocarditis as an inflammatory cardiomyopathy distinct from DCM, both groups were classified here as DCM because of their similar echocardiographic appearances. [Gerald Cox, et al., 2006].

Aetiology:

The following table lists the known causes of cardiomyopathies in childhood [Towbin et al., 2006], [Denfield et al., 1998].

Infection

Viral:

Coxsackievirus B and A

Echovirus Adenovirus Mumps

Rubella, Rubeola

Bacterial:
Diphtheria
Meningococcal
Gonococcal
Fungal:
Candidiasis

Aspergillosis *Protozoal:*

American trypanosomiasis

(Chigas disease) Toxoplasmosis Rickettsial:

Rocky mountain spotted fever

Spirochetal: Lyme disease

Metabolic conditions

Endocrine
Thyrotoxicosis
Hypothyroidism
Diabetes mellitus

Infant of diabetic mother Diabetic cardiomyopathy

Hypoglycemia

Pheochromocytoma

Neuroblastoma Catecholamine **Nutritional deficiency:**

Protein: Kwashiorkor Thiamine: Beriberi

Vitamin E and selenium (Keshan

disease) Phosphate Others

Carnitine deficiency b-ketothiolase deficiency

Hypertaurinuria

General system disease:

Connective tissue disorder:

Systemic lupus
Juvenile rheumatoid
Polyarteritis nodosa

Kawaaki disease

Pseudoxanthoma elasticum Infilterations and granulomas:

Leukemia Sarcoidosis

Others

Hemolytic uremic syndrome Mitochondrial cytopathy

Reye syndrome

Peripartumcardiomyopathy Osteogenesis imperficta Noonan's syndrome

Heredofamilial conditions:

Muscular dystrophies and

myopathies:

Juvenile progressive (Duchenne) Myotonic dystrophy (Steinert)

Limb-girdle (Erb)

cardiomyopathy

Congenital adrenal hyperplasia

Familial storage disease:

Glycogen storage disease:

Pompe disease (Type II)

Cori disease (Type III)

Andersen disease (Type IV)

McArdle disease (TypeV)

Hers disease (Type VI)

Mucopolyaccaridosis:

Hurter syndrome

Hunter syndrome

Sanfilippo syndrome

Morquio syndrome

Scheie syndrome

Maroteaux-Lamy syndrome

Sphingolipidosis:

Nieman-Pick disease

Farber disease

Fabry disease

Gaucher disease

Tay-Sachs disease

Sandhoff disease

Gm1 gangliosidosis

Refsum disease

Cardioskeletal myopathy (Barth syndrome)

X-linked cardiomyopathy

Juvenile progresive spinal muscular atrophy (Kugelberg-

Welander)

Nemaline myopathy

Myotubular myopathy

Neuromuscular disorders:

Friedreich's ataxia

Multiple lintiginosis

Ischemic:

Congenital coronary artery

malformation

Familial hypercholesterolemia

Post vasculitis (Kawasaki)

Sensitivity and toxic

reactions:

sulphonamides

penicillin

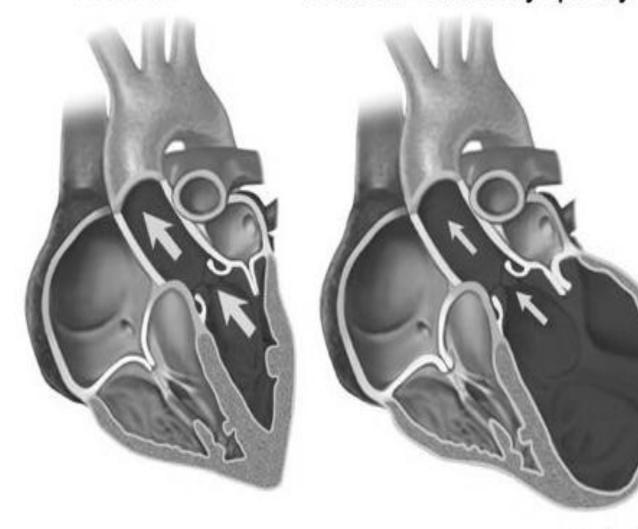
anthracyclines

iron (hemachromatosis)

chloramphenicol

Tachyarrhythmias:

Supraventricular tachycardia


Atrial flutter

Ventricular tachycardia

Dilated cardiomyopathy (DCM)

Normal

Dilated cardiomyopathy

A normal heart is shown on the left compared to a heart with dilated cardiomyopathy on the right. Note the increased dimensions of the left ventricle.

[Franklin, et al, 2000]

Definition:

Idiopathic dilated cardiomyopathy (ICM) refers to congestive cardiac failure secondary to dilatation and systolic dysfunction (with or without diastolic dysfunction) of the ventricles (predominantly left) in the absence of congenital, valvular, or coronary artery disease or any systemic disease known to cause myocardial dysfunction. DCM is the most common type of heart muscle disease in children [Michels, et al., 2008].

All 4 cardiac chambers are dilated and are sometimes hypertrophied. Dilation is more pronounced than hypertrophy, and the left ventricle is affected more often than the right ventricle. The cardiac valves are intrinsically normal, although the mitral and tricuspid valve rings are dilated, and the valve leaflets do not appose each other in systole, giving rise to varying degrees of mitral regurgitation, tricuspid regurgitation, or both. Persistent mitral regurgitation leads to thickening of the mitral valve leaflets, and, at times, distinguishing this thickening from other causes of mitral regurgitation is difficult. Thrombus formation (secondary to the low-flow cardiac output state) is often seen in the left ventricular apex and, at times, is seen in the atria. Occasionally, the right ventricle is preferentially involved in the cardiomyopathic process; this often indicates a familial basis [Michels, et al., 2003].

Incidence:

The **incidence** of DCM is about 5-8 cases per 100,000 population per year. [Andrews, et al., 2008].