PRODUCTION OF SOME CELLULASE ENZYMES BY CELLULOSE- DECOMPOSING FUNGI

Thesis
Submitted in partial fulfillment for the degree of
M.Sc. in Science
(Microbiology)

BY **Basant Abd El-tawab Ibrahim**

Supervisors

Dr. Adel Elmahlawy

Microbiology Department Faculty of Science Ain Shams University

Prof. Dr. Ali M. Elshafei

Microbial Chemistry Department Genetic Engineering and Biotechnology Division National Research Center

Prof. Dr. Fatma Hussein Ali

Chemical Engineering and Pilot Plant Department National Research Center

> Department of Microbiology Faculty of Science Ain Shams University 2010

Approval Sheet

PRODUCTION OF SOME CELLUASE ENZYMES BY CELLULOSE- DECOMPOSING FUNGI

By

Basant Abd El-tawab Ibrahim

B.Sc., In Microbiology

Ain Shams University

2003

Supervisors Committee

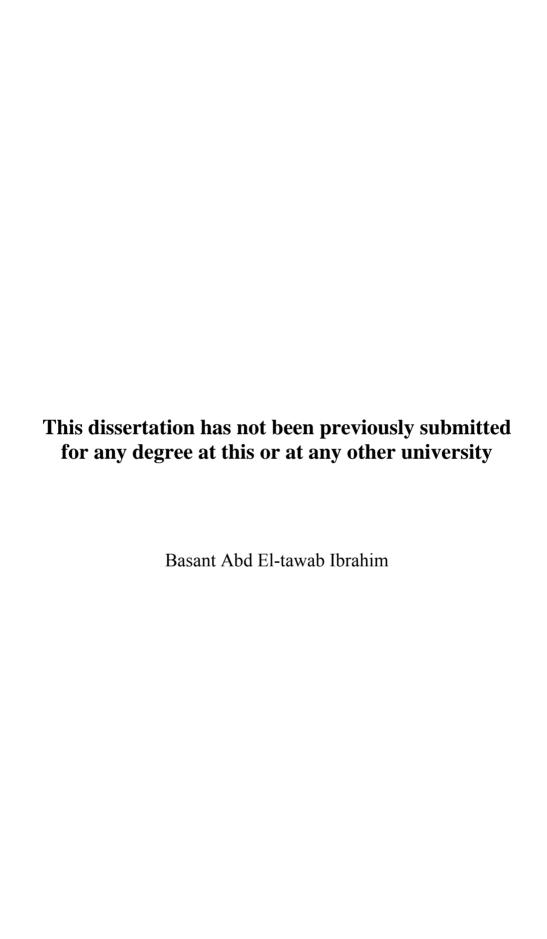
Approved

Dr. Adel ElmahlawyMicrobiology Department
Faculty of Science
Ain Shams University

Prof. Dr. Ali M. Elshafei

Microbial Chemistry Genetic Engineering and Biotechnology Division National research center

Prof. Dr. Fatma H. Ali


Chemical Engineering and Pilot Plant Department National research center

Examination Committee

Date examination: / /2010 Approved Date: / /2010

University Council approved: / /2010

ACKNOWLEDGEMENT

I thank ALLAH almighty for the marvelous things He has done for me, I can do nothing without Him.

Firstly, I send a Flower for the soul of **Prof**. **Dr**. **Fatma Hussein Ali**, Professor of chemical engineering, Chemical Engineering Department, National research center, for her kindness, love and suggestion the research point and caring she gave me in almost the thesis parts, I am very lucky to be one of her students.

A special gratitude for **Dr**. **Adel Elmahalwy**, Professor of microbiology, Department of Microbiology, Faculty of Science, Ain-Shams University, For his supervision, patience, and support in all parts of this work.

Special thanks for **Prof**. **Dr**. **Ali M**. **Elshafei**, Professor of microbial chemistry, Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National research center, for his valuable supervision and help throughout work.

All gratitude and respect for Associate Prof. Dr. Tarek Kahil, associate professor of microbial chemistry, Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National research center, for supervision, supporting and helping in writing of all thesis parts.

A Flower for **Dr**. **Enas M**. **Mostafa**, Researcher of Chemical engineering, Chemical Engineering Department, National research center, for helping in the modeling part of thesis.

My thanks to all the staff and members of the Microbial Chemistry Department and National Research Center Authority for the financial support and facilities that enabled us to accomplish this work.

My in-depth appreciation goes to my **Mother and Father** who have taught me the first of everything and stood by me all through my studies for their constant support and prayers.

CONTENTS

	Page
I. <u>Introduction</u>	 1
1.1 Background	 1
1.2 Aim of work	 5
II. Review of Literature	 6
2.1 Research Status of Cellulase	 11
Enzyme	
2.2 Characteristic of Cellulase	 17
Complex Enzyme	
2.2.1 Endo-glucanases	 18
2.2.2 Exo-glucanases	 19
2.2.3 Beta-glucosidase	 20
2.3 Influence of process	 21
parameters	
2.3.1 Inoculum	 21
2.3.2 Culture condition for	 22
cellulase production	
2.3.3 Medium composition	 22
2.3.3.1 Carbon source and	 23
inducers	
2.3.3.2 Nitrogen sources	 25
2.3.3.3 Other nutrients and	 25
surfactants	
2.3.4 pH and Temperature	 27
2.3.5 Aeration and Agitation	 29
2.4 Scaling up enzyme production	 31
2.5 Growth in submerged culture	 32
2.6 Fermentation Modes	 32
2.6.1 Batch Process	 32
2.6.2 Continuous Process	 34
2.6.3 Fed Batch Process	 35
2.7 Modeling Bioprocess	 38
2.8 Modeling methods	 40
2.9 Modeling the growth and	
product formation in fungal	
fermentations	 41
2.10 Application of Cellulases in	 45
Industry	
2.11 The Cost of cellulase	 50
production	

	Page
2.12 Utilization of lignocellulosic	 51
wastes for cellulase production	01
III. Materials and methods	 56
3.1 Materials	 56
3.1.1 Microorganisms	 56
3.1.2 Media	 56
3.1.3 Chemicals	 57
3.1.4 Buffers	 58
3.2 Methods	 59
3.2.1 Cultivation of filamentous	 59
fungi	
3.2.2 Preparation of cell-free	 59
filtrate	
3.2.3 Shake-flask experiments	 59
3.2.4 Fermentor experiments	 60
3.2.5 Kinetic procedures	 61
3.2.6 Pretreatment of	 63
lignocellulosic waste	
3.2.7 Fiber Analysis	 65
3.2.8 Protein Determination	 69
3.2.9 Determination of enzyme	 69
activities	0,
3.2.9.1 Exo-glucanase	 70
(FPase) assay	
3.2.9.2 Endo-glucanase	 70
(CMCase) assay	
	 70
assay	, 0
3.2.9 Determination of	 71
reducing sugars	
IV. Results	 73
Part 1: SCREENING AND	 73
PHYSIOLOGICAL STUDIIES ON	, -
THE PRODUCTION OF	
EXOGLUCANASE UNDER SHAKE	
FLASK CONDITIONS	
4.1.1 Screening of different	 73
fungal strains for Exoglucanase	. 2
Production	

		Page
4.1.2 Evidence for the presence of cellulase system by <i>Trichoderma</i>		76
reesei NRC 210		
4.1.3 Effect of Incubation period	•••••	79
on Exoglucanase production by Trichoderma reesei NRC210		
4.1.4 Effect of different		0.1
inoculum media on Exoglucanase		81
production by Trichoderma reesei		
NRC 210		
4.1.5 Effect of different		82
inoculum size & age on		
Exoglucanase production by		
Trichoderma reesei NRC 210		
4.1.6 Effect of different carbon		84
sources on Exoglucanase production		
by Trichoderma reesei NRC 210		
		86
concentrations on Exoglucanase		
production by <i>Trichoderma reesei</i> NRC 210		
4.1.8 Effect of different nitrogen		07
sources on Exoglucanase production		87
by <i>Trichoderma reesei</i> NRC 210		
4.1.9 Effect of different		90
concentrations of Ammonium		70
Phosphate on Exoglucanase		
production by Trichoderma reesei		
NRC 210		
4.1.10 Effect of different		92
concentrations of Urea on		
Exoglucanase production by		
Trichoderma reesei NRC 210		
4.1.11 Effect of temperature on	•••••	93
the production of Exoglucanase by <i>Trichoderma reesei</i> NRC 210		
4.1.12 Effect of initial pH on		0.5
Exoglucanase production by	•••••	95
Trichoderma reesei NRC 210		

	Page
4.1.13 Effect of pretreatment method of lignocellulosic waste on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 97
4.1.14 Effect of treated rice straw concentration on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 99
4.1.15 Effect of different nitrogen sources on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210 grown on alkaline/oxidative treated straw	 101
4.1.16 Effect of initial pH on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210 grown on alkaline oxidative rice straw	 104
Part 2: PROPERTIES OF CRUDE EXOGLUCANASE ENZYME PRODUCED BY TRICHODERMA REESEI NRC 210	 106
4.2.1 Effect of pH on the activity of crude exoglucanase of <i>T. reesei</i> NRC 210	 106
4.2.2 Effect of reaction temperature on the crude exoglucanase activity produced by <i>T</i> .reesei NRC210	 108
4.2.3 Thermal stability behavior of the crude exoglucanase activity of <i>T. reesei</i> NRC210	 109
4.2.4 Effect of enzyme concentration on the crude exoglucanase activity of <i>T. reesei</i> NRC210	 111
4.2.5 Effect of enzyme substrate (Avicel) on the crude exoglucanase activity of <i>T. reesei</i> NRC 210. (Kinetic constants for the crude exoglucanase enzyme)	 112

	Page
4.2.6 Effect of some metal salts and Ethylene diamine tetra acetate (EDTA) on the crude exoglucanase activity of <i>T. reesei</i> NRC 210	 115
10.7 0.1	 117
Part 3: PRODUCTION OF EXOGLUCANASE ENZYME BY TRICHODERMA REESEI NRC 210 AT THE FERMENTOR LEVEL (USING PURE MICROCRYSTALLINE CELLULOSE AS CARBON	 119
SOURCE) 4.3.1 Batch fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (under conditions of Uncontrolled pH, Stirrer-speed: 350 rpm, Temperature: 25°C and	 119
Aeration level: 0.5 (vvm) 4.3.2 2 nd Batch fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (under conditions of Controlled pH (4-5), Stirrer-speed: 350 rpm, Temperature: 25°C and	 125
Aeration level: 0.5 (vvm) 4.3.3 Comparison between uncontrolled and controlled pH batch fermentations for production of exoglucanase enzyme from <i>T</i> .	 128
reesei NRC 210 4.3.4 3 rd Batch fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (under conditions of Stirrer-speed: 250 rpm, Controlled pH, Temperature: 25°C and Aeration level: 0.5 (vvm)	 132

	Page
4.3.5 Comparison between batch fermentations for production of exoglucanase enzyme from <i>T. reesei</i> NRC 210 with 250 and 350 rpm agitation speed	 136
4.3.6 4 th Batch Fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (with alkaline/oxidative rice straw as sole carbon source under conditions of Controlled pH (7-8), Stirrer-speed: 350 rpm, Temperature: 25°C and Aeration level:0.5(vvm))	 140
4.3.7 Application of Kinetic Model on the Fermentation Process	 144
V. <u>Discussion</u>	 149
<u>Summary</u>	 169
Conclusion	 173
References	 175
Arabic summary	

List of tables:

	Page
4.1 Screening of different fungal strains for exoglucanase production	 75
4.2 Evidence for the presence of cellulase system in <i>Trichoderma</i> reesei NRC 210	 78
4.3 Effect of Incubation period on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 80
4.4 Effect of different inoculum media on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 81
4.5 Effect of different inoculum size & age on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 83
4.6 Effect of different carbon sources on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 85
4.7 Effect of cellulose concentrations on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 86
4.8a Effect of different inorganic nitrogen sources on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 88
4.8b Effect of different organic nitrogen sources on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 89
4.9 Effect of different concentrations of Ammonium Phosphate on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 91
4.10 Effect of different concentrations of Urea on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 92

	Page
4.11 Effect of temperature on the production of Exoglucanase by <i>Trichoderma reesei</i> NRC210	 94
4.12 Effect of initial pH on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 96
4.13 Effect of pretreatment method of lignocellulosic waste on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 98
4.14 Effect of treated rice straw concentration on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210	 100
4.15a Effect of different inorganic nitrogen sources on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210 grown on alkaline/oxidative treated straw	 102
	 102
4.16 Effect of initial pH on Exoglucanase production by <i>Trichoderma reesei</i> NRC 210 grown on alkaline oxidative rice straw	 104
4.17 Effect of pH on the activity of the crude exoglucanase activity of <i>T. reesei</i> NRC 210	 107
4.18 Effect of reaction temperature on the reaction rate of crude exoglucanase of <i>T. reesei</i> NRC 210	 108
	 110
4.20 Effect of enzyme concentration on the crude exoglucanase activity of <i>T. reesei</i> NRC 210	 111

	Page
4.21 Effect of enzyme substrate (Avicel) concentration on the crude exoglucanase activity of <i>T. reesei</i> NRC 210	 113
100 ECC + C + 1 1 1 1 EDE	 116
4.23 Substrate specificity for the crude exoglucanase activity of <i>T. reesei</i> NRC 210	 117
4.24 1 st Batch fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (under conditions of Uncontrolled pH, Stirrer-speed: 350	 121
rpm, Temperature: 25°C and Aeration level: 0.5 (vvm)) 4.25 2 nd Batch fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (under conditions of Controlled pH (4-5), Stirrer-speed:	 126
350 rpm, Temperature: 25°C and Aeration level: 0.5 (vvm))	 129
by <i>T. reesei</i> NRC 210 4.27 3 rd Batch fermentation for exoglucanase production by <i>T. reesei</i> NRC 210 (under conditions of Controlled pH, Stirrer-speed: 250	 133
rpm, Temperature: 25°C and Aeration level: 0.5 (vvm)) 4.28 Comparison between batch fermentations for the production of exoglucanase enzyme by <i>T. reesei</i> NRC 210 with 250 rpm and 350 rpm	 137
agitation speed 4.29 4 rd Batch fermentation for exoglucanase production by <i>T</i> .	 141

reesei NRC 210 with alkaline/ oxidative rice straw as sole carbon source under conditions Controlled pH (7-8), Stirrer-speed: 350 rpm,, Temperature: 25°C and Aeration level: 0.5 (vvm)