ASSESSMENT OF VITAMIN D LEVEL IN NEWLY DIAGNOSED EGYPTIAN PATIENTS WITH B-CELL LYMPHOPROLIFERATIVE DISORDERS

For partial fulfillment of the master degree in Clinical hematology

Submitted by

Yousra Mohamed Radwan Ali

(M.B.B.Ch.)

Supervised by

Prof. DR. Manal Elhossiny Abo farha

Professor of Internal Medicine,
Faculty of Medicine- Cairo University

DR. Hala Mahmoud Abdelhamid Fahmy

Assistant professor of Internal Medicine, Faculty of Medicine- Cairo University

DR. Fatma Mohamed Taha

Assistant professor of Medical Biochemistry Department, Faculty o Medicine- Cairo University

Faculty of Medicine
Cairo University
2014

Acknowledgment

First and foremost (Thanks to Great Allah) the most merciful and kind

It is a pleasure to express my deepest thanks and profound respect to **Dr. Manal El Huseiny Abu Farha** Professor of Internal Medicine, Faculty of Medicine Cairo University for her continuous encouragement and valuable supervision throughout this work.

Very special thanks to **Dr. Hala Mahmud Abd El Hamid,**Assistant professor of Internal Medicine, Faculty of Medicine, Cairo University, for her continuous support and supervision not only in this work but in all my life. No Words can express my deepest gratitude and respect .It is an honor being one of her students and work under her supervision.

I am deeply grateful to **Dr. Fatma Mohamed Taha**, Assistant professor of Medical Biochemistry Department, Faculty of Medicine, Cairo University, for great help in performing this work.

Also I would like to express my gratitude to **Dr. Noha Mohamed El Husseiny**, Lecturer of Internal Medicine, Faculty of Medicine, Cairo University, for her help in performance the statistics of this work

I would like to sincerely thank **Dr. Reham El Shiemy**, Lecturer of Clinical Pathology National Cancer Institute, Cairo University for her help in performance of this work

Words fail to express my deep appreciation to my **Mother and Father** for their continuous help, support and encouragement as without their help, this work never be completed

Special thanks to **DR**. Mervat Mohamed Matter the head of hematology medicine Faculty of Medicine, Cairo University who is the light of my life in hematology medicine.

Last but not least I am deeply grateful to all patients for their participation in this study

Yousra Mohamed Radwar

Abstract

There is astrong link between vitamin D and cancer playing an important role in reducing incidence and mortaliny. Concerning hematological malignancies it was found that low level of this vitamin is linked to higher cancer incidence and mortality, so we aim from this study to check vitamin D status and its link to lymphoproliferative disorders. The study group include 60 subjects, 20 patient had CLL and 20 patients had NHL, 20 patients as control group, all groups are subjected to measurement of 25(OH) D by ELISA technique.

Key Words: Vitamin D - Lymphoproliferative disorders - Risk and prognostic

factor.

List of contents

Subject	page	
List of Abbreviations	I	
List of Tables	VIII	
List of Figures	IX	
Introduction	1	
Aim of the work	3	
Review of literature		
Chapter (1): Vitamin D	4	
Chapter (2): Vitamin D and cancer	35	
Chapter (3): Vitamin D and hematological malignancies	46	
Chapter (4): B-cell chronic lymphoproliferative disorders	54	
Chapter (5): Lymphoma	69	
Chapter (6): Chronic lymphocytic leukemia	96	
Patients and Methods	115	
Results	120	
Discussion	129	
Recommendations and conclusions	138	
Summary	139	
References	140	
Arabic summary	173	

List of Abbreviations

1, 25(OH) 2D3 1, 25 dihydroxy vitamin D3

25 OH D3 25 hydroxyvitamin D3

AIHA Autoimmune hemolytic anemia

ALCL Anaplastic large cell lymphoma

ALL Acute lymphoblastic leukemia

ALPS Autoimmune lymphoproliferative syndrome

ALT Alanine transaminase

AML Acute myeloid leukemia

APC Antigen presenting cell

AST Aspartate transaminase

BAL Bcl-2-associated X protein

BCa Breast cancer cell

Bcl-2 B-cell leukemia/lymphoma-2genes

BMT Bone marrow transplantation

BUN Blood Urea Nitrogen

C/EBP CCAAT-enhancer-binding proteins

Ca² Calcium ions

CBC Complete blood count

CBP Calcium- binding proteins

CD Cluster of differentiation

CDK Cyclin-dependent kinase

CHOP Cyclophosphamide, Doxorubicin, Vincristine, and

Prednisone

List of Abbreviations (cont.)

CHS Chédiak-Higashi syndrome

CLL Chronic lymphocytic leukemia

CLL Chronic lymphocytic leukemia

CMV Cytomegalovirus

CNS Central nervous system

CODOX-M Cyclophophsphamide, Vincristine, Doxorubicin,

Cytarabine, Methtrexate

COX-2 Cycloogenase enzyme

CR Complete response

CSF Cerebral spinal fluid

CT Computed Tomography

CVP Cyclophosphamide, Vincristine, and Prednisone

CXR Chest x-ray

CYP24 25-hydroxyvitaminD-24-hydroxylase

CYP27 Vitamin D3-25-hydroxylase

CYP27b1 Cytochrome p450 27B1

(25-hyroxyvitamin D3 1-alpha-hydroxylase)

DAT Direct antigloulin test

DBP Vitamin D binding protein

DC Dendritic cell

del (13q) Deletions in the long arm of chromosome13

del (11q) Deletions in the long arm of chromosome11

del (17p) Deletion in the short arm of chromosome 17

DNA Deoxyribonucleic acid

EBER EBV-encoded RNA

EBV Epstein-Barr virus

EGFR Epidermal growth factor

ELISA Enzyme-linked immunosorbent assay

EPOCH Etoposide, Vincristine, Doxorubicin, Prednisone

Cyclophosphamide

ESR Erythrocyte sedimentation rate

FAS The Fas receptor is a death receptor on the surface of

cells that leads to programmed cell death (apoptosis).

FCM Fludarabine, Cyclophosphamide, and Mitoxantrone

FCR Fludarabine, Cyclophosphamide, and Rituximab

FISH Fluorescence in situ-hybridization

FL Follicular lymphoma

FLC Serum free light chain

GCs Germinal centers

G-CSF Granulocyte colony-stimulating factor

GIT Gastrointestinal tract

GM-CSF Granulocyte macrophage colony stimulating factor

HAART Highly active anti-retroviral therapy

HCL Hairy cell leukemia

HCV Hepatitis C Virus

HHV8 Human herpes virus-8

Ш

Hib Haemophilus influenza type b

HIV Human immunodeficiency virus

HLA Human leukocyte antigen

HTLV-1 Human T-cell lymphotrophic virus type 1

Hyper-CVAD Vincristine, Doxorubicin, Dexamethasone and

Cyclophosphamide

IDBP Intracellular vitamin D binding protein

Ig Immunoglobulin

IgD Immunoglobulin D

IGFBP Insulin like growth factor binding protein-3

IgM Immunoglobulin M

IgVH Immunoglobulin variable heavy chain

IL Interleukin

IMiD Immunomodulatory drug

INR International normalized ratio

ITD Internal tandem duplication

ITP Immune thrombocytopenia

IU International units

IVIG Intravenous immunoglobulin

LDH Lactate dehydrogenase

LFTS Liver function tests

LIP Short –length isoform of C/EBPβ

LN Lymph node

Lumber puncture

MALT Mucosa-associated lymphoid tissue

MBL Monoclonal B-lymphocytosis

MC-26 Mouse cancer cell

MCL Mantle cell lymphoma

MDS Myelodysplastic syndromes

MHC Major Histocompatibility complex

MKP5 Mitogen-activated protein kinase phosphatase-5

ML Milliliter

MMP Matrix metalloproteinases

MRD Minimal residual disease

MRI Magnetic resonance imaging

MRNA Messenger ribonucleic acid

NF-KB Nuclear factor kappa B

NHANESIII National Health and Nutrition Examination SurveyIII

NHL Non-Hodgkin lymphomas

NK Natural killer cell

NSAIDs Non steroidal anti-inflammatory drugs

OR Overall response

OS Overall survival

P21 Cyclin dependent kinase inhibitor 1

P27 Cyclin dependent kinase inhibitor 1B

PA Plasminogen activator

PC Prostate cancer cell

PCNSL Primary central nervous system lymphoma

PCR polymerase chain reaction

PCR Pentostatin, Cyclophosphamide, and Rituximab

PET Positron emission tomography

PFS Progression free survival

PGs Prostaglandins

PLL Prolymphocytic leukemia

PR Partial remission

PTLD Post transplant lymphoproliferative disorder

RANK Receptor activator of NF-KB

RANKL Receptor activator of NF-KB ligand

RAP Receptor-associated protein

REAL Revised European American Lymphoma

SF3B1 Splicing factor 3b

SLL Small lymphocytic lymphoma

Smlg Surface membrane immunoglobulin

SMZL Splenic marginal zone lymphoma

Snail A zinc finger transcriptional repressor which downregulate the

expression of ectodermal genes within the mesoderm

TB Tuberculosis

TCR T cell receptor

TdT Terminal deoxynucleotidyl transferase

TGF-α Transforming growth factor-α

TH-1 Thelper 1

TH-2 Thelper 2

TLR Toll- like receptor

TNF Anti- tumor-necrosis factor

T-reg Regulatory T cell

TTT Time to treatment

UA Uric acid

UAE United Arab Emirates

UV Ultra violet

VD Vitamin D

VDAs Vitamin D analogues

VDR Vitamin D receptor

VDRE Vitamin D responsive element

VEGF Vascular endothelial growth factor

WAS Wiskott-Aldrich syndrome

WASP Wiskott-Aldrich syndrome protein

WHO World Health Organization

ZAP70 Protein tyrosine kinase involved in cell signaling

following antigen recognition on lymphocyte

List of Tables

Table	Title	page		
Tables in review of literature				
1	Dietary sources of vitamin D	7		
2	Causes of vitamin D deficiency	32		
3	Cell markers in mature B-cell lymphoproliferative disorders	67		
4	Immunohistochemistry profile of common lymphomas	95		
5	Scoring system for CLL diagnosis	103		
List of Tables in Results				
(I)	Patients demographic data	120		
(II)	Laboratory data of CLL patients	121		
(III)	Laboratory data of NHL patients	122		
(IV)	Laboratory data of Control group	123		
(V)	Comparison between group C &LPD case as regard 25(OH)D level	124		
(VI)	Comparison between group A and group B as regard 25(OH)D level	126		
(VII)	Comparison between group C & A as regard 25(OH)D level	127		
(VIII)	Comparison between group C & B as regard 25(OH)D level	128		

List Of Figures

Figure	Title	Page		
Figures in review of literature				
Fig 1	Isomers of vitamin D2 and D3	5		
Fig 2 a,b	Vitamin D3 synthesis, activation, and catabolism	11,12		
Fig 3	Role of vitamin D in mediating certain cellular responses to external signals	12		
Fig 4	Renal and extra renal 1, 25 (OH) 2D3 productions serve	13		
	endocrine, autocrine, and paracrine functions			
Fig 5	Roles of megalin and intracellular vitamin D binding protein 3 in	15		
	the delivery and 1- &-hydroxylation of 25hydoxyvitamin D			
Fig 6	Diagrammatic representation of the vitamin D endocrine system	18		
Fig 7a	Overall Survival of AML and vitamin D level	51		
7b	Progression Free Survival of AML and vitamin D level			
Fig 8	Illustrating the panel of markers useful for the diagnosis of	65		
	chronic lymphoproliferative disorders			
Fig 9	Cellular origin of B-cell lymphomas	70		
Fig 10	Incidence of NHL	73		
Fig 11	Primary Cutaneous CD8+ T-Cell Lymphoma	78		
Fig 12	Mycosis Fungoides picture	78		
Fig 13	Non-Hodgkin lymphoma: parotid mass	78		
Fig 14	Non-Hodgkin lymphoma: pharyngeal	78		
Fig 15	Non-Hodgkin lymphoma: chest x-ray showing isolated	80		
	pulmonary nodule in patient with AIDs			

Fig 16	A- Non-Hodgkin lymphoma: CT scan of chest	81	
	B-Non-Hodgkin lymphoma: CT scan of head		
Fig 17	A-Non-Hodgkin lymphoma: CT scan of abdomen	81	
	B-Non-Hodgkin lymphoma: CT scan show parotid mass		
Fig 18	Follicular lymphoma histology	93	
Fig 19	Burkitt's lymphoma histology	93	
Fig 20	Hematoxylin and Eosin (H & E) smear from FL tissue.	93	
Fig 21	Mantle cell lymphoma histology	93	
Fig 22	Infiltrating lymphoma cells express strong positivity with anti-	94	
	CD20 stain, B-cell origin		
Fig 23	Histologic analysis of primary mediastinal large B-cell	94	
	lymphoma		
Fig 24	Peripheral smear from a patient with chronic lymphocytic	102	
	leukemia		
Fig 25	Treatment Algorithm for AIHA/ITP	114	
List of Figures in Results			
Fig (I)	Sex distribution between study groups	120	
Fig (II)	Comparison between group C &LPD case as regard 25(OH) D	124	
	level		
Fig(III)	Distribution of vit D deficiency between patients	125	
Fig (IV)	Comparison between group A & B as regard 25(OH)D level	126	
Fig (V)	Comparison between group C & A as regard 25(OH)D level	127	
Fig (VI)	Comparison between group C & B as regard 25(OH)D level	128	
	<u> </u>		