Molecular and biochemical study of superoxide dismutase in Egyptian patients with type 2 diabetes mellitus

A Thesis

Submitted for the award of the degree of M.Sc. (Biochemistry)

Presented By

Riham Abdel Hamid Haroun

B.Sc., Biochemistry, 2005 Demonstrator in Department of Biochemistry, Faculty of Science, Ain Shams University

Under Supervision of

Prof. Dr. Kamal Ali Shalaby

Professor of Biochemistry Faculty of Science Ain Shams University.

Dr. Eman Ibrahim Kandil

Lecturer of Biochemistry Faculty of Science Ain Shams University.

Dr. Ahmed Anwar Sayed

Lecturer of Clinical Pathology Faculty of Medicine Al-Azhr University

Faculty of Science Ain Shams University 2010

CONTENTS

	Page
List of Abbreviations	iv
List of Tables	X
List of Figures	xii
Acknowledgment	XV
Abstract	xvii
Introduction	1
Aim of the Work	4
Review of Literature	5
Diabetes Mellitus	5
Definition of Diabetes Mellitus	5
Classification of Diabetes Mellitus	5
Type 1 Diabetes	6
Type 2 Diabetes	8
Other specific types of diabetes	12
Gestational Diabetes	15
Diagnosis of Diabetes Mellitus	16
Complications of Diabetes Mellitus	17
Diabetes Mellitus as an Oxidative Stress	19
Definition of Oxidative Stress	19
Endogenous Production of ROS	20
Biomarkers of Oxidative Stress	23
Defense mechanisms against oxidative stress	24
Methods for evaluation of oxidative stress	25
Radial reactions	25
Diabetes Mellitus and Oxidative Stress	29

CONTENTS (Cont.)

	Page
Superoxide dismutase	34
Cytosolic Cu/Zn-SOD	36
Mitochondrial Mn-SOD	38
Extracellular Cu/Zn-SOD	39
EC-SOD Structure	39
Tissue Distribution of EC-SOD	46
Biological role of EC-SOD	46
Medical applications of EC-SOD	48
EC-SOD and Diabetes Mellitus	. 48
Subjects and Methods	51
Laboratory measurements	53
Determination of Serum Glucose Concentration	53
Quantitative Determination of Glycosylated Hemoglobin A1c	55
Determination of Superoxide Dismutase (SOD) Activity in Serum	59
Determination of Lipid Peroxidation in Serum	61
Quantitative Determination of Erythrocytic Sedimentation Rate	. 64
Determination of Serum CRP Concentration	65
Determination of Serum Cholesterol Concentration	67
Determination of Serum Triglycerides Concentration	69
Determination of Serum HDL-C Concentration	71
Determination of Serum Urea Concentration	. 73
Determination of Serum Creatinine Concentration	75
Determination of Serum AST Concentration	77
Determination of Serum ALT Concentration	. 79
Determination of Serum Albumin Concentration	80
Determination of Serum Total Bilirubin Concentration	. 82
DNA analysis	85

CONTENTS (Cont.)

	Page
Extraction of genomic DNA from blood	. 85
Amplification of Arg213Gly EC-SOD Region	. 87
Detection of the PCR amplification products using gel electrophoresis	. 91
Restriction genotyping of Arg213Gly EC-SOD amplified sequences	. 96
Statistical Analysis	98
Results	100
Discussion	127
Conclusion	140
Recommendations	. 141
Summary	142
References	146

List Of Abbreviations

4AAP	4-aminoantipyrine
8-OHdG	8-Hydroxy-2-deoxyguanosine
8-OHG	8-Hydroxy-guanine
ADP	Adenosine diphosphate
aEC-SOD	Active extracellular superoxide dismutase
ALT	Alanine aminotransferase
anti-GAD	Anti-glutamic acid decarboxylase
AP-1	Activator protein-1
ARE	Antioxidant response elements
Arg	Arginine amino acid
Arg213Gly	Arginine 213 to Glycine substitusion
ASC	Ascorbic acid
Asn	Asparagine amino acid
AST	Aspartate aminotransferase
ATP	Adenosine-5'-triphosphate
BMI	Body mass index
bp	Base pair
C/EBP beta	CCAAT enhancer binding protein-beta
Ca ²⁺	Calcium ion
CAT	Catalase enzyme
cDNA	Complementary DNA
CHD	Coronary heart disease

CHOL	Total cholesterol
CoQ	Coenzyme Q
CRP	C-reactive protein
Cu ²⁺	Copper ion
Cu/Zn-SOD	Copper/zinc containing superoxide dismutase
CVD	Cardiovascular disease
Cys	Cysteine amin acid
Cyt C	Cytochrome c
dATP	Deoxyadenosine triphosphate
dCTP	Deoxycytidine triphosphate
DDC	Dietheldithiocarbamate
dGTP	Deoxyguanosine triphosphate
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleoside triphosphates
DTT	Dithiothreitol
dTTP	Deoxythymidine triphosphate
ECM	Extracellular matrix
EC-SOD	Extracellular superoxide dismutase
EDTA	Ethylenediaminetetraacetic acid
ESR	Erythrocytic sedimentation rate
ETC	Electron transport chain

FADH ₂	1,5-dihydro-flavin adenine dinucleotide
FBS	Fasting blood glucose
Fe (II)	Iron (II) ion
Fe (III)	Iron (III) ion
Fe-SOD	Iron containing superoxide dismutase
G6PD or	Glucose-6-phosphate dehydrogenase
G6PDH	
GDM	Gestational diabetes mellitus
GHb	Glycosylated hemoglobin
Glu	Glutamic amino acid
Gly	Glycine amino acid
GOT	Glutamate Oxaloacetate transaminase
GPT	Glutamate pyruvate transaminase
GPX	Glutathione peroxidase
GSH	Glutathione
GSSG	Oxidized glutathione
H ₂ O	Water molecule
H_2O_2	Hydrogen peroxide
Hb A1c	Glycosylated Hemoglobin A1c
HCl	Hydrochloric acid
HDL-C	High density lipoprotein cholesterol
HNE	4-hydroxynonenal

HNF	Hepatocyte nuclear factor
HOCl	Hypochlorous acid
IDDM	Insulin-dependent diabetes mellitus
iEC-SOD	Inactive extracellular superoxide dismutase
JNK	C-Jun N-terminal kinases
kDa	Kilo Dalton
KCl	Potassium chloride
LDL	Low density lipoprotein
LDL-C	Low density lipoproteins cholesterol
LMWA	Low molecular weight antioxidants
LPO	Lipid peroxides
Lys	Lysine amino acid
MDA	Malondialdehyde
MgCl ₂	Magnesium chloride
Mn-SOD	Manganese containing superoxide dismutase
MODY	Maturity-onset diabetes of the young
MPO	Myeloperoxidase enzyme
mRNA	Messenger RNA
MTS	Mitochondrial targeting sequence
NADH	Reduced nicotinamide adenine dinucleotide
NADH-DH	NADH dehydrogenase
NBT	Nitroblue tetrazolium

NF-κB	Nuclear factor kappa-light-chain-enhancer of
	activated B cells
NIDDM	Non-insulin-dependent diabetes mellitus
NO·	Nitric oxide
NOS	Nitric oxide synthase
NOX2	NADPH oxidase 2
O_2	Oxygen molecule
OCl-	Hypochlorite ion
ОН•	Hydroxyl radical
ONOO-	Peroxynitrite
PAD	Peripheral arterial disease
PARP	Poly-ADP ribose polymerase
PCR	Polymerase chain reaction
PKC	Protein kinase C
PPS	Postprandial blood glucose
R213G	Arginine 213 to Glycine substitusion
RFLP	Restriction fragment length polymorphism
ROS	Reactive oxygen species
S.D.	Standard deviation
S-DH	Succinate dehydrogenase
SOD	Superoxide dismutase
SOD1	Copper/zinc containing superoxide dismutase

sod1	Copper/zinc containing superoxide dismutase
	coding gene
SOD2	Manganese containing superoxide dismutase
sod2	Manganese containing superoxide dismutase
	coding gene
SOD3	Extracellular superoxide dismutase
sod3	Extracellular superoxide dismutase coding
	gene
SPSS	Statistical Package for the Social Sciences
SSCP	Single-strand conformational polymorphism
T2D	Type 2 diabetes
TAE	Tris-acetate-EDTA buffer
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid-reactive substances
TCA	Trichloroacetic acid
TG	Triglycerides
Trp	Tryptophan amino acid
VLDL	Very low density lipoproteins
WHO	World health organization
Zn ²⁺	Zinic ion

List of Tables

Table	Title	Page
(1)	Classification of diabetes mellitus.	6
(2)	The conversion of Glycosylated Hemoglobin	58
	A1 (GHbA1) to Glycosylated Hemoglobin	
	A1c (HbA1c) and to the Mean Blood Glucose	
	level (MBG).	
(3)	Polymerase chain reaction set up.	90
(4)	Cycling Conditions of PCR.	91
(5)	Statistical analysis of blood sugar levels and	102
	HbA1c between diabetic group and normal	
	control group.	
(6)	Statistical analysis of total SOD activity&	104
	MDA level between diabetic group and	
	normal control group.	
(7)	Statistical analysis of ESR and CRP levels	106
	between diabetic group and normal control	
	group.	
(8)	Statistical analysis of serum CHOL, TG,	108
	HDL-C& LDL-C levels between diabetic	
	group and normal control group.	
(9)	Statistical analysis of serum Urea&	110
	Creatinine levels between diabetic group and	
	normal control group.	
(10)	Statistical analysis of serum AST, ALT,	112
	Albumin& total Bilirubin levels between	
	diabetic group and normal control group.	

List of Tables (Cont.)

Table	Subject	Page
(11)	Spearman correlation coefficients of SOD	115
	and other parameters.variables among active	
	TB group.	
(12)	Spearman correlation coefficients of MDA	119
	and other parameters.	
(13)	Genotype distribution of the Arg213Gly EC-	126
	SOD polymorphic markers in control and	
	patient groups.	

List of Figures

Figure	Title	Page
(1)	Schematic representation of the	21
	mitochondrial electron transport chain (ETC).	
(2)	Enzymes involved in generation and	22
	reduction of ROS.	
(3)	The antioxidant defense system.	25
(4)	Reduction of oxygen with 4 electrons and 4	27
	protons forming water.	
(5)	The cell damage induced by reactive oxygen	31
	species (ROS).	
(6)	Proposed link between hyperglycemia and	33
	four mechanisms that lead to tissue damage.	
(7)	Schematic representation of the 3 human	36
	superoxide dismutase (SOD) genes.	
(8)	Schematic diagram of the human EC-SOD	41
	gene.	
(9)	EC-SOD protein structure.	42
(10)	Heparin binding affinity patterns of EC-SOD.	44
(11)	Disulfide connectivity of active and inactive	45
	EC-SOD.	
(12)	Biologic functions of EC-SOD. EC-SOD	47
	scavenges superoxide anion, which limits	
	oxidative stress and preserves nitric oxide	
	bioavailability.	
(13)	Schematic diagram illustrating the predicted	50
	effect of EC-SOD glycation on vascular	
	disease in diabetics.	

List of Figures (Cont.)

Figure	Title	Page
(14)	MDA-TBA Adduct.	61
(15)	Standard curve of MDA.	63
(16)	Mean of FBS, PPS and HbA1c in control and	103
	diabetic groups.	
(17)	Mean of SOD and MDA in control and	105
	diabetic groups.	
(18)	Mean of ESR and CRP in control and	107
	diabetic groups.	
(19)	Mean of total cholesterol, TG, HDL-C and	109
	LDL-C in control and diabetic groups.	
(20)	Mean of Urea and Creatinine in control and	111
	diabetic groups.	
(21)	Mean of AST, ALT, albumin and total	113
	bilirubin in control and diabetic groups.	
(22)	Relation between SOD and MDA.	116
(23)	Relation between SOD and ESR.	116
(24)	Relation between SOD and total cholesterol.	117
(25)	Relation between SOD and TG.	117
(26)	Relation between SOD and LDL-C.	118
(27)	Relation between MDA and SOD.	120
(28)	Relation between MDA and ESR.	120
(29)	Relation between MDA and total cholesterol.	121
(30)	Relation between MDA and TG.	121
(31)	Relation between MDA and LDL-C.	122

List of Figures (Cont.)

Figure	Title	Page
(32)	Agarose (1.5%) gel electrophoresis showing	123
	genomic DNA. Lane 1: Æ x 174 DNA/ III	
	marker, Lanes: 2-8 different genomic DNA	
	sample.	
(33)	Analysis of PCR amplification products. The	124
	amplified PCR products of different samples	
	were separated on 2% agarose gel. Lane 1: Æ	
	x 174 DNA/ III marker, Lanes: 2-8 different	
	PCR products of 104 bp in size.	
(34)	Restriction analysis of Arg213Gly	125
	polymorphism at the SOD3 gene on 3%	
	agrose gel. Lanes 2-7, samples after digestion	
	with Eco521; lane 5, Arg/Arg genotype; lanes	
	2,3&7, Arg/Gly genotype; lanes 4&6 Gly/Gly	
	genotype. Lane 1&8: molecular DNA marker	
	φ X 174 / Hae III fragments are shown.	