

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING COMPUTER AND SYSTEMS DEPARTMENT

Mining of Software Design Patterns

A THESIS

SUBMITTED FOR THE PARTIAL FULFILLMENT OF MASTER DEGREE IN ELECTRICAL ENGINEERING (COMPUTER AND SYSTEMS ENGINEERING)

By

Eng. MOHAMED ABOU-BAKR MOHAMED SOLIMAN B.Sc. in Computer and Systems Engineering Faculty of Engineering, Ain shams University, 2005

Supervised by

Prof. Dr. AYMAN MOHAMED WAHBA
Faculty of Engineering
Ain shams University

Dr. ISLAM AHMED ELMADDAH
Faculty of Engineering
Ain shams University

Cairo 2010

APPROVAL SHEET

Thesis title: Mining of Software Design Patterns

Presented by: Eng. Mohamed Abou-Bakr Mohamed Soliman

Degree Name: Master of Electrical Engineering

(Computer and system Engineering)

Thesis Defense Committee

Name, Title and Affiliation

Signature

1. Prof. Dr. Mohamed Gamal El-Din Darwish

Faculty of Computers and Information, Cairo University

2. Prof. Dr. Hani Mohamed Kamal Mahdi

Faculty of Engineering, Ain shams University

3. Prof. Dr. Ayman Mohamed Wahba

Faculty of Engineering, Ain shams University

STATEMENT

This dissertation is submitted to Ain Shams University in fulfillment of the requirements for master degree in Electrical Engineering.

This work included in the thesis was made by the author during the period from October 2005 to October 2010 at Computer and Systems Engineering Department, Ain Shams University.

No part of this thesis has been submitted for degree or qualification at any other university or institute.

Date:

Signature:

Name: Mohamed Abou-Bakr Soliman

Contents

List of Figures			ix	
List of Tables Acknowledgments				
1	Intr	oduction	1	
2	Bacl	kground	5	
	2.1	Understanding Design Patterns	5	
		2.1.1 Design Patterns Foundation	5	
		2.1.2 Design Patterns in Reverse Engineering	10	
	2.2	Design Pattern Mining Challenges	12	
	2.3	Classification of Related Work	14	
		2.3.1 Detect Pattern Structural Aspects	15	
		2.3.2 Detect Pattern Behavioral Aspects	16	
		2.3.3 Search Pattern Implementation Variants	17	
		2.3.4 Improve Pattern Mining Performance	17	
		2.3.5 Detect Partial/Distorted Patterns	18	
	2.4	Variety of Design Patterns' Implementations	18	
3	Desi	gn Pattern Description	25	
	3.1	Formalizing Design Patterns		
	3.2	Proposed Design Pattern Description		
		3.2.1 Design Pattern Description (DPD) Model	29	
	3.3	GoF Patterns Description	30	
4		gn Pattern Miner (DPM)	37	
	4.1	DPM Mining Process		
	4.2			
	4.3	Sub-Graph Matching CSP		
	4.4	DPD to CSP Transformation	48	
	4.5	DPM Implementation	53	

5	DPM Evaluation and Results	55
	5.1 Pattern Mining Evaluation Aspects	55
	5.2 DPM Evaluation and Results	
	5.3 Design Pattern Miner Tools Comparison	
6	Conclusion and Future Work	65
A	ASG Specification	67
	A.1 AST Specification	68
	A.2 ASG Enrichments	
В	CSP Foundation	75
	B.1 Introduction	75
	B.2 CSP Solving	
C	DPM QVT Rules	83
D	DPM Design Specification	107
	D.1 DPM Architecture	108
	D.2 DPM Packages Design	110
	D.3 DPM GUI	
E	Benchmark Design Patterns	115
	E.1 JUnit 3.8	116
	E.2 JUnit 4.1	
	E.3 AWT 1.3	
Re	eferences	135

List of Tables and Figures

List of Figures

2.1	OOA/D process and the role of patterns	6
2.2	The GoF Singleton pattern structure	8
2.3	An Example of a Singleton pattern implementation code snipet	
	from the Java AWT framework	8
2.4	The GoF Composite pattern structure	9
2.5	An Example of a Composite pattern implementation code snipet	
	from the JUnit 3.8 framework.	10
2.6	Design Pattern Mining Challenges Hierarchy	12
2.7	Template Method pattern GoF OMT structure, and examples of	
	Template Method Java implementation variants in JUnit framewo	ork
		20
2.8	Bridge pattern GoF OMT structure, and examples of Bridge Java	
	implementation variants in Java AWT	21
2.9	An Example for a Decorator pattern implementation	22
2.10	Two examples for different one to many association	
	implementations for the Composite pattern	23
3.1	FUJABA's specification for the Singleton and Abstract Factory	
	Patterns	26
3.2	MUSCAT's specification for the Bridge and Abstract Factory	
	Patterns	27
3.3	Design Pattern Description (DPD) domain model	
3.4	Composite DPD structure	
3.5	Decorator DPD structure	
3.6	Bridge DPD structure	35
3.7	Template Method DPD structure	
4.1	The design pattern mining process implemented by DPM	38
4.2	Code snippet from the AWT Java framework and the AST result	
	from parsing	40

4.3	The type nodes to declaration nodes relationships enrichment, the	ne
	blue lines represent the new declaration relationships	41
4.4	Classes relationships enrichment, the red lines represent the new	
	classes relationships.	
4.5	The pattern matching CSP domain model	
4.6	The pseudocode for the AC-3 CSP Reduction algorithm	
4.7	The pseudocode for the Chronological Backtracking CSP search	
	algorithm	
4.8	The transformation of the Singleton pattern DPD to a CSP based	d on
	the DPM defined QVT rules.	51
4.9	The transformation of the Bridge pattern DPD to a CSP based o	n
	the DPM defined QVT rules	51
5.1	DPM accuracy vs. PINOT accuracy, based on the AWT 1.3	
	evaluation results.	62
A.1	ASG Package node sub-tree	68
A.2	ASG TypeDeclaration node sub-tree	
A.3	ASG Type node sub-tree	
A.4	ASG Method node sub-tree	
A.5	ASG Formal Parameter node sub-tree	
A.6	ASG Field node sub-tree	
A.7	ASG TypeDeclaration node static relations and properties	
A.8	ASG Method node static relations and properties	
A.9	ASG Method node dynamic relations and properties	
D 1		0.1
B.1	Control of the chronological backtracking (BT) algorithm	
B.2	Cost of problem reduction vs. cost of backtracking	82
D.1	DPM Package Diagram	108
D.2	DPDToCSP Adapter classes	
D.3	ASGCreator package class diagram	
D.4	DPM Parser class diagram	
D.5	DPM GUI snapshot for the JUnit 4.1 Packages	
D.6	DPM GUI snapshot for the JUnit 4.1 classes and design pattern	

List of Tables

5.1	DPM mining results on JUnit 3.8	58
5.2	DPM mining results on JUnit 4.1	58
5.3	DPM mining results on AWT 1.3	58
	DPM performance evaluation results in seconds	
	PINOT mining results on AWT 1.3	
E.1	JUnit 3.8 Design Patterns' Instances	116
E.2	JUnit 4.1 Design Patterns' Instances	118
E.3	AWT 1.3 Design Patterns' Instances	121

Acknowledgments

My thesis would not have been possible without the expert guidance and everlasting patience of my advisors, Prof. Dr. Ayman Wahba and Dr. Islam El-Maddah. I thank them for their comments which were always insightful and appropriate. Many thanks go to my thesis committee for revising my thesis. I thank them for their efforts and comments in perfecting my thesis.

The writing of a thesis can be a lonely and isolating experience, yet my research journey to an MSc degree would not have been possible without the help and support of numerous people. Thus, my sincere gratitude goes to my mother, father, and all my friends for their love and their personal and practical support over the last few years.

Special thanks to my leaders in Hewlett Packard – HP Company for their continuous support and their invitation to attend the HP Tech Conference.

Mohamed A. Soliman Computer and Systems Engineering Dept.

Mining of Software Design Patterns

Abstract

One of the most repeatable and time consuming tasks in the software development process is trying to analyze and understand the technical implementation and design of an existing program source code. Design patterns encapsulate solutions to common object oriented design problems which make them an aid to understand different design decisions taken by software designers in existing software. Thus, by detecting design patterns from the source code, we can understand the main intent of the design. Current approaches for design patterns detection described design patterns based on a specific pattern implementation without considering the pattern semantics which prevents the detection of many existing pattern implementation variants. This thesis presents a new, fully automated source code pattern mining approach. The new approach is based on a new design pattern description which describes design patterns based on the pattern semantics. We claim that design pattern description has a great impact on the accuracy of a design pattern mining tool. Our approach is capable of detecting a variety of design patterns' implementations based on the proposed pattern description. This thesis also describes our tool, DPM, that implements the new pattern description based on a model transformation approach. DPM is using graph matching and constrain satisfaction problem (CSP) algorithms to detect patterns' instances. DPM has been tested against benchmark applications, including JUnit and Java AWT. Comparison to