WEANING FROM MECHANICAL VENTILATION

Essay

Submitted for Partial Fulfillment of Master Degree in Intensive Care

By

Imane Ali Dawoud Khalil

M.B., B.CH Faculty of Medicine, Cairo University

Under Supervision Of

Prof. Dr. Bahaa El-Din Ewais Hassan

Professor of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Amal Hamed Rabie

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Ayman Ahmed Kasem

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2010

Acknowledgement

Thanks first and last to **ALLAH** as we owe him for his great care, support and guidance in every step in our life.

I want to thank Prof. Dr. Bahaa El-Din Ewais Hassan, Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, who guided this work and helped whenever I was in need.

Special thanks are due to Dr. Amal Hamed Rabie, Lecturer of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University, for dedicating so much of her precious time and effort to complete this work

I owe my deep thanks and gratitude to Dr. Ayman Ahmed Kasem, Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his great support, patience and fruitful comments without which this work have never been accomplished.

Lastly but not least, I would like to thank all members in my family specially for pushing me forward all the time

Imane Ali Dawoud

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	3
Review of literature	
Anatomy and physiology of the respirator	y system 4
Modes of mechanical ventilation	22
Weaning from mechanical ventilation	53
Difficult weaning	83
Summary	114
References	118
Avahia Summayy	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Measurements Used to Identify Patients Who	
10010 (1/	Will Tolerate a Spontaneous Breathing Trial	59

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Respiratory passages	4
Figure (2):	A, Surface view of capillaries in an alveolar wall. B, Cross-sectional view of alveolar walls and their vascular supply	7
Figure (3):	Diagram showing respiratory excursions during normal breathing and during maximal inspiration and maximal expiration	11
Figure (4):	Diagram showing the distribution of alveolar ventilation (V_A) , pulmonary blood flow (Q) , and the ventilation: perfusion ratio (V_A/Q) in a normal lung	18
Figure (5):	Ultrastructure of the alveolar respiratory membrane, shown in cross section	20
Figure (6):	Controlled Mandatory Ventilation, decelerating ramp flow	25
Figure (7):	Volume Assist/Control Ventilation, decelerating ramp flow	26
Figure (8):	Volume Synchronized Intermittent Mandatory Ventilation (SIMV), decelerating ramp flow	28
Figure (9):	Idealized pressure and flow time curve in PCV	29
Figure (10):	Pressure control with inverse ratio ventilation	31
Figure (11):	Pressure controlled synchronized intermittent mandatory ventilation	32

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (12):	Continuous Positive Airway Pressure (CPAP)	33
Figure (13):	Pressure Support Ventilation	35
Figure (14):	Airway pressure graphs during 3 different modes of mechanical ventilation: continuous positive airway pressure (CPAP), pressure controlled ventilation, and biphasic positive airway pressure (BIPAP)	36
Figure (15):	Airway Pressure Release Ventilation	39
Figure (16):	Pressure and flow waveforms during pressure regulated volume control	45
Figure (17):	Pressure and flow waveforms during pressure regulated volume control	48
Figure (18):	Section of HFJV: Note the expiratory conduit through which additional gas is entrained during inspiration	52
Figure (19):	Schematic representation of the different stages occurring in a mechanically ventilated patient	54
Figure (20):	Relationship of blood oxygen saturation (SaO2) to blood oxygen tension (PaO ₂) with the normal curve having a sigmoidal shape	65
Figure (21):	Expired CO2 (PECO ₂) as a function of time. Expired CO ₂ tension varies markedly during a breathing cycle in four phases	66

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (22):	Reduction in infectious complications in patients undergoing non invasive ventilation compared to invasive mechanical ventilation	100
Figure (23):	Bivona low-profile cuff tracheostomy tube	105

LIST OF ABBREVIATIONS

Abbrev.	Meaning
ABG	Arterial blood gases
A/C	Assisted control ventilation
ALI	Acute lung injury
APRV	Airway pressure release ventilation
APV	Adaptive pressure ventilation
ARDS	Acute respiratory distress syndrome
ARF	Acute respiratory failure
ASV	Adaptive Support Ventilation
ATC	Automated tube compensation
BIPAP	Biphasic intermittent positive airway pressure
BP	Blood pressure
BNP	Brain natruiretic peptide
bpm	Breath per minute
C_{DYN}	Dynamic compliance
CINMA	Critical illness neuromuscular abnormalities
CMV	Controlled mechanical ventilation
CNS	Central nervous system
COPD	Chronic obstructive pulmonary disease
CPAP	Continuous positive airway pressure
$\mathbf{C}_{\mathbf{TL}}$	Total lung compliance
C_{ST}	Static compliance
FIO_2	Fraction of inspired oxygen
FRC	Functional residual capacity
Hgb	Hemoglobin
HFFI	High Frequency Flow Interruption
HFJV	High Frequency Jet Ventilation
HFOV	High Frequency Oscillatory Ventilation
HFPPV	High Frequency Positive Pressure Ventilation
HFV	High Frequency Ventilation
Hz	Hertz
ICU	Intensive care unit
I:E	Inspiratory expiratory ratio

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Meaning
MV	Mechanical ventilation
NIMV	Non invasive mechanical ventilation
PA	Pressure augmentation
PAC	Pulmonary artery catheterization
P-A/C	Pressure assisted control ventilation
PAV	Proportional assisted ventilation
PaO_2	Arterial blood oxygen tension
PaCO2	Arterial blood carbon dioxide tension
$P_{ET}CO_2$	End tidal carbon dioxide
PC-IRV	Pressure control with inverse ratio ventilation
PCV	Pressure control ventilation
PEEP	Positive end expiratory pressure
P _{HIGH}	Pressure high
P _{LOW}	Pressure low
PIP	Peak inspiratory pressure
Pi max	Maximum inspiratory pressure
PRVC	Pressure regulated volume control
PS	Pressure support
P-SIMV	Pressure Synchronized intermittent mandatory ventilation
PSV	Pressure support ventilation
Raw	Airway resistance
RR	Respiratory rate
SBT	Spontaneous breathing trial
SaO_2	Arterial oxygen saturation
SVO_2	Mixed venous oxygen saturation
T _{HIGH}	Time high
T _{LOW}	Time low
TOE	Trial of extubation
TPN	Total parentral nutrition
VA/Q	Ventilation perfusion ratio
VALI	Ventilator Associated Lung Injury
VAP	Ventilator associated pneumonia

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Meaning
VAPS	Volume assured pressure support
VC+	Volume control plus
$\mathbf{V_E}$	Minute ventilation
V/Q	Ventilation perfusion ratio
VPC	Variable pressure control
VPS	Variable pressure support
VS	Volume support
V-SIMV	Volume Synchronized intermittent mandatory ventilation
$\mathbf{V_T}$	Tidal volume
VTE	Venous thromboembolism
WOB	Work of breathing

INTRODUCTION

Mechanical ventilation is one of the life support procedures closely associated with the development of modern intensive care medicine. The primary goal of ventilator support is the maintenance of adequate gas exchange which must be achieved with minimal lung injury and the lowest possible degree of hemodynamic impairment (Koh, 2007).

Although mechanical ventilation is a life-saving intervention for patients suffering from acute respiratory failure, it is associated with numerous grave complications and should be discontinued at the earliest possible time. On the other hand, premature extubation followed by reintubation is associated with increased morbidity and mortality. Choosing the right time for a successful discontinuation of mechanical ventilation, in the light of available physiologic and laboratory factors, remains a challenge (*Eskandar*, 2007).

Weaning indices are objective criteria that are used as predictors of weaning outcome that could guide clinicians in determining the optimal time to discontinue mechanical ventilation. The actual process of weaning a patient from mechanical ventilation is carried out by allowing spontaneous breathing attempts or by gradually reducing mechanical assistance through the

use of a ventilation mode, which supports spontaneous breathing (Kogler, 2009).

About 25% of mechanically ventilated patients will fail their first attempt at weaning. Greater understanding of the pathophysiology of weaning failure has led to new approaches to the optimal timing and the techniques used for weaning, making weaning one of the most challenging problems in intensive care, and accounting for a considerable proportion of the workload of staff in an intensive care unit *(Tobin, 2006)*.

AIM OF THE WORK

The aim of this study is to highlight the process of weaning from mechanical ventilation as regards the best timing, the best technique and the management of difficult weaning to avoid prolonged mechanical ventilation with its complications.

ANATOMY AND PHYSIOLOGY OF THE RESPIRATORY SYSTEM

Anatomy of the Respiratory System:

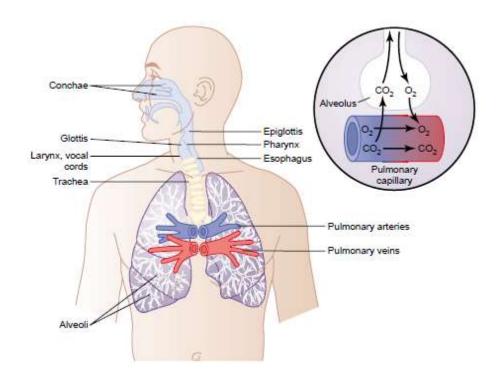


Figure (1): Respiratory passages (Gyton and Hall, 2006).

I. Upper airway:

Air travels from the nasal passages to the pharynx, and then into the larynx. The larynx lies at the level of upper cervical vertebrae, C4-6, and its main structural components are the thyroid, cricoid and arytenoid cartilages. The thyroid and cricoid cartilages are linked anteriorly by the cricothyroid