بسم الله الرحمن الرحيم الله الا ما علمتنا انك انت العليم القالوا سبحانك لا علم لنا الا ما علمتنا انك انت العليم الحكيم"

صدق الله العظيم

سورة البقرة:الاية ٣٢

The effect of Sodium Fluoride and Xylitol containing varnishes on Streptococcus mutans count In the Plaque of preschool children a comparative study

Thesis

Submitted to the Faculty of Oral and Dental Medicine,
Cairo University
In Partial Fulfillment of the Requirements
Of Master Degree in Pediatric Dentistry

By

Yomna Said Abd El-Azim Mohamed B.D.S October 6 University

Faculty of Oral and Dental Medicine Cairo University 2010

Supervisors

Dr. Nevine Gamal Waly
Professor of Pediatric and Community
Dentistry
Faculty of Oral and Dental Medicine
Cairo University

Dr. Ola Mohamed Omar
Associate Professor of Pediatric and Community
Dentistry
Faculty of Oral and Dental Medicine
Cairo University

Acknowledgment

I am most thankful to **GOD** for all hos kindness and grace, for having granted me the patience to accomplish this work.

I would like to express my sincere gratitude to **Prof.Dr.Nevine G.Waly** Professor of Pediatric and community Dentistry, Facutly of Oral and Dental Medicine ,Cairo University, for her kind suggestion of the subject of that thesis as well as her precious and valuable scientific guidance, support and close advice. It has been my privilege and almost pleasure to conduct this work under her supervision.

I would like to express my deepest appreciation to Ass. Prof. Dr. Ola M.Omar Associate Professor of Pediatric and community Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University, for her supervision, valuable advices, unique cooperation and encouragement which were of inestimable value.

My thanks are extended to the stuff members of **Pediatric and Community Dentistry Department**, Faculty of Oral and Dental Medicine, Cairo University, for their kindness.

Further thanks are extended to the authorities of different Orphanages who agreed to participate in this study thus making this work possible.

Dedication

To my Family

for their endless Love and Support.

To My Husband

for always being there

Content

Introduction	1
Review of literature	5
Aim of the Study	37
Subjects and Methods	38
Results	53
Discussion	64
Summary	72
Conclusions	75
Recommendations	76
References	77

List of figures

Figure	page
Figure (1) Maxillary primary incisors with no visible defects	39
Figure (2) Soduim fluoride varnish with xylitol	40
Figure (3) Soduim fluoride varnish without xylitol	41
Figure (4) Dentocult SM strip mutans kit	42
Figure (5) The vials at room temperature before use	43
Figure (6) Insertion of bacitracin disc in the selective culture broth	44
Figure (7) The selective culture broth vial with evenly distributed bacitracin disc	44
Figure (8) Plaque sample collection using a wooden tooth pick	45
Figure (9):Spreading plaque samples on the four rough surfaces of the strip	46
Figure (10): The vials with plaque strips clipped and attached to the cap after 48 hours incubation	46
Figure (11) Incubator where vials were placed.	47
Figure (12)Plaque sample strip= Class3	48
Figure (13) Plaque sample strip with combined classes	48
Figure (14): Plaque sample strip=Class 2	49
Figure (15): Dentocult manufacturer chart	49
Figure (16): Fluoride varnish application	52
Figure(17):Mean scores of Streptococcus mutans in both groups at base line, after one week and three months	57
Figure (18): Correlation between mean scores of streptococcus mutans in relation to age before varnish application in group I	59
Figure (19):Correlation between mean scores of streptococcus mutans in relation to age after three months of varnish application in group I	59
Figure (20): Correlation between mean scores of streptococcus mutans before in relation to age before varnish application in group II	60
Figure(21):Correlation between mean scores of streptococcus mutans in relation to age after three months of varnish application in group II	61
Figure(22): Comparison between percentage of change in plaque streptococcus mutans count before varnish application, one week and three months after varnish application in both groups	62

List of Tables

Table	page
Table (1) Descriptive data of the study sample.	54
Table (2) Distribution of the study group according to sex.	54
Table (3) Distribution of the study group according to age	54
Table (4) Mean scores of streptococcus mutans count in dental	55
plaque in group I (sodium fluoride varnish with xylitol)	
Table (5) Mean scores of streptococcus mutans count in dental	55
plaque in group II(sodium fluoride varnish without xylitol	
Table (6) Comparison between mean scores of streptococcus	56
mutans count in dental plaque in both groups	
Table (7) Comparison between means cores of streptococcus	56
mutans count in dental plaque in both groups in relation to time of	
application of sodium fluoride varnish with and without xylitol.	
Table (8) Comparison between mean scores of streptococcus	58
mutans count in dental plaque in group I (sodium fluoride varnish	
with xylitol) in relation to sex.	
Table (9) Comparison between mean scores of streptococcus	58
mutans count in dental plaque in group II (sodium fluoride	
varnish without xylitol) in relation to sex.	
Table (10):Mean percent drop in streptococcus mutans scores in	62
both groups in relation to time of application.	

INTRODUCTION

INTRODUCTION

Dental caries is the most common chronic disease in childhood, consisting in a severe public health problem for worldwide. It has a multifactorial etiology and is developed upon the presence of the dental biofilm, which is responsible for mediating the demineralization of dental hard tissue. The interaction among three factors during a period of time promotes the development of caries. These factors are: cariogenic microorganisms (streptococcus mutans), fermentable substrate (such as saccharose) and a vulnerable host (*Loesche*, 1986).

The infection with streptococcus mutans plays an important role in the onset and progression of the disease. When the mothers have high concentration of streptococcus mutans, children are exposed to early infection and have higher prevalence of caries (KÖhler and Andéen, 1994).

Recent studies carried out in Brazil have demonstrated that the prevalence of childhood caries ranges from 12 to 46%, and the age group having the highest amount of caries is that including children from one to three years (*Dini et al.*, 2000).

The most recent national epidemiological surveillance of oral health found a prevalence of 26.85% of caries in children between 18 and 36 months, showing an evident increase as children grow older, regardless of sex (*Davidoff et al.*, 2005).

The development of carious lesions is associated with infection, pain, chewing difficulty, psychological trauma and early teeth loss. Dental pain is the immediate most common consequence of untreated caries. Children with dental pain have their daily activities affected such as eating, sleeping and playing, as well their school performance can be impaired (*Edelstein et al.*, 2006).

AAPD, 2008 classifies early childhood caries as the presence of one or more decayed (non cavitated or cavitated lesions), missing (due to caries), or filled tooth surfaces in any primary tooth in a child 71 months of age or younger .However, any sign of smooth surface caries, with or without cavity in children younger than three years old, is considered severe early childhood caries(S-ECC).S-ECC replaces the previous term known as "nursing bottle caries".

When there is early loss of the upper anterior teeth ,there might be abnormal production of speech sounds and eating difficulty. Loss of vertical dimension in 63% of the children with extensive carious lesions in the upper incisors caused by S-ECC was also detected. Early loss of deciduous molars leads to chewing

difficulty, in addition to space loss problems in the permanent dentition (*Rokbe*, 2008).

The development of deciduous teeth begins in the intrauterine period, this is important to control infectious diseases and maternal diet. Therefore, the prevention of S-ECC must begin during pregnancy. Visiting the dentist is important for evaluation of the mother's oral status, providing curative and preventive treatment, mainly to stimulate oral care with the purpose of controlling streptococcus mutans levels and therefore, decreasing the transmission of cariogenic bacteria to their infants (*AAPD*, 2008).

Preventive measures usually involve a combination of dietary counsels, oral hygiene measures and fluoride applications (*Tinanoff et al.*, 2002). Fluorides are delivered to the teeth in different dosages and a variety of ways. They can be delivered topically or systemically. Low doses of topical fluoride are found in most over the counter tooth pastes and optimally fluoridated water. Higher doses are found in oral rinses and fluoride supplements (pills or liquids) that are used at home. Using a fluoride supplement or drinking optimally fluoridated water provides both topical and systemic effects (*Featherstone*, 2004).

Recent studies have shown that sodium fluoride varnish is effective in reducing decay in the primary teeth of high risk children. There is evidence that the preventive effect is strongest when the

fluoride varnish is applied before onset of detectable dental caries (Autio-Gold and Tomar, 2005).

Within this context, the utilization of xylitol is highlighted, which was initially studied as a sugar substitute because of its similarity as regards the sweetening power and later was also employed in other forms of caries prevention and control (*Bastos et al.*, 2005).

Xylitol is a naturally occurring sugar substitute that has been shown to reduce the levels of streptococcus mutans in plaque and saliva and to reduce tooth decay. It's specific effect on oral flora and especially on certain strains of streptococcus mutans add to its caries preventive profile and give it a unique role in preventive strategies for dental caries (*Ly et al.*, 2006).

Therefore, the present study was designed to throw light on the additional effect of xylitol containing sodium fluoride varnish on the colonization of streptococcus mutans in dental plaque and compare it's effect to another sodium fluoride varnish without xylitol.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

Dental caries is a common, complex, chronic disease resulting from an imbalance of multiple risk factors and protective factors over time. Once dental caries occurs, it's manifestations persist throughout life, even though the lesion is treated (*Shafer et al.*, 1983). Dental caries can be defined as "an infectious microbiological disease of the teeth that results in localized dissolution and destruction of the calcified dental tissues" (*Sturoevant et al.*, 1995).

Historically, there are three main theories describing the etiology of dental caries the chemico-parasitic (acidogenic)theory proposed by Miller, 1890, the proteoloic theory by Gottleib, 1944 and the proteolysis chelation theory by Shafer et al., 1983.

The proteolytic theory postulates that the organic structures of the tooth provide the initial pathway for the invasion of microorganisms and their products and this is followed by the loss of the inorganic phase. The proteolytic bacteria act on the organic matrix of enamel liberating sulfuric acid from sulfated mucopolysaccharides of the organic matrix; this acid dissolves enamel minerals (*Gottlieb*, 1944)