Mitral Valve Repair versus Replacement in Patients with Ischemic Mitral Regurgitation, a Comparative Study in a Sample of Egyptian Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiothoracic Surgery

Presented by

Abd Elhaleem Ramadan Abd Elhaleem Shalaby

(M.B.B.Ch. Ain Shams University)

Supervised by

Prof. Dr. Mohamed Mohamed El-Fiky

Professor of Cardiothoracic Surgery
Faculty of Medicine- Ain Shams University

Prof. Dr. Yasser Mahmoud El Nahas

Associate Professor of Cardiothoracic Surgery Faculty of Medicine- Ain Shams University

Prof. Dr. Faisal Amr Mourad

Associate Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Thanks are one emotion that flow directly from the heart and it is very wonderful feeling that never goes away.

First and foremost, Thanks are due to **ALLAH** the most merciful and the mightiest to whom I relate my success in achieving any work in my life.

I would like to express my sincere gratitude and deepest appreciation to **Prof. Dr. Mohamed Mohammed El-Fikky.** Professor Of cardiothoracic surgery, Ain Shams University, for his kindness, precious advice, continous encouragement and guidance throught out the preparation of this work.

I am deeply greatfull to **Prof. Dr. Yasser Mahmmoud El Nahas**, Associate Professor of cardiothoracic surgery, Ain Shams University for his guidance and help in this work.

I really express my gratitude to **Tr. Faisal Amr Mourad**, Lecturer of cardiothoracic surgery, Ain Shams University, for his support, attention and supervision throw out this work.

Finally, I wish to extend my heartful gratitude to all my professors and colleagues in **National heart institute** for their valuable help and support in this work.

Contents

Subject	Page No.
List of Figures	I
List of Tables	V
List of Abbreviations	X
Introduction	1
Aim of the Work	3
- Chapter (1): Functional anatomy	4
- Chapter (2): Definition, prevalence and	
classification of ischemic mitral regurg	gitation . 15
- Chapter (3): Pathophysiology of chronic i	ischemic
mitral regurgitation	25
- Chapter (4): Assessment of chronic ische	mic
mitral regurgitation	40
- Chapter (5): Management and outcomes	58
Patients and Methods	94
Results	101
Discussion	151
Conclusion and Recommendations	168
Summary	170
References	172
Arabic Summary	١١

List of Figures

Figure	Títle	Page
Fig. 1	Mitral Vlalve anatomy.	5
Fig. 2	The asymmetry of the mitral valve.	8
Fig. 3	Mitral valve anatomy.	11
Fig. 4	Carpentir's classification of mitral	20
	regurgitation.	
Fig. 5	Site of ischemic mitral valve prolapse.	21
Fig. 6	Mechanism of ischemic Mitral	26
	Regurgitation.	
Fig. 7	Forces acting on mitral valve.	29
Fig. 8	"Seagull" sign of ischemic mitral	29
	regurgitation.	
Fig. 9	The 2 main patterns of leaflet tethering.	30
Fig. 10	Pathophysiology of ischemic mitral	39
	regurgitation.	
Fig. 11	Echocardiographic image in 4-chamber	44
	view in mid- systole images of mitral	
	apparatus on echocardiography.	
Fig. 12	Images of mitral apparatus on	45
	echocardiography.	
Fig. 13	Two-dimensional TTE assessment of	51
	Chronic ischemic Mitral regurgitation	
	severity.	
Fig. 14	Dynamic component of ischemic Mitral	54
	Regurgitation.	
Fig. 15	Three-dimensional reconstruction of	55
	central regurgitation jet and mitral valve	
	annulus.	
Fig. 16	Short axis image, cine-MRI.	56

Figure	Títle	Page				
Fig. 17	Cardiac MRI imaging and evaluation of	57				
	mitral valve geometrical parameters.					
Fig. 18	Exercise- induced changes in ERO in a	60				
	paced and nonpaced					
Fig. 19	Incidence of postoperative recurrence of	75				
	grade 2+ MR reported in the literature					
	after MVA.					
Fig. 20	Leaflet tethering of the AML and PML.	86				
Fig. 21	Several new mechanism-based	89				
8	subvalvular and ventricular surgical					
	techniques for CIMR.					
Fig. 22	Patch placement and balloon inflation	91				
	over the infarct region repositioning the					
	displaced PM toward the anterior					
	annulus and relieving tethering and MR					
Fig. 23	Location of the Coapsys device	92				
Fig. 24	Bar chart for gender distribution in both	103				
	groups					
Fig. 25	Bar chart for IABP use	113				
Fig. 26	Bar chart for inotropes	115				
Fig. 27	Bar chart for mortality	118				
Fig. 28	Bar chart for CVS	120				
Fig. 29	Bar chart for liver impairment	122				
Fig. 30	Bar chart for renal impairment	124				
Fig. 31	Bar chart for mortality in both groups	136				

List of Tables

Table	Títle					
Table 1	The mitral valvular complex					
Table 2	Carpentier's classification of mitral	19				
	regurgitation					
Table 3	Quantitative grading of severity of	47				
	mitral regurgitation					
Table 4	Criteria for the definition of severe MR.	47				
Table 5	Stages of secondary MR. new guidelines	48				
	2014 for grading severity of IMR					
Table 6	Echocardiographic findings in ischemic	50				
	mitral regurgitation due to asymmetric					
	versus symmetric tethering					
Table 7	Echocardiographic and clinical	52				
	characteristics of different subgroups					
	of IMR					
Table 8	Indications for mitral valve surgery in	65				
	chronic secondary mitral regurgitation.					
	ESC/EACTS guidelines 2012					
Table 9	Independent preoperative	73				
	echocardiographic predictors of					
	restrictive mitral annuloplasty failure.					
Table 10	Unfavorable Echocardiographic	74				
	characteristics for Mitral Valve Repair					
	in ischemic mitral regurge					
Table 11	Age distribution among studied groups.					
Table 12	Gender distribution among studied					
	groups					

Table	Títle	Page			
Table 13	Distribution of risk factors among	104			
	studied groups				
Table 14	Chi-Square Tests for DM in both groups	104			
Table 15	Descriptive Statistics for preoperative	105			
	echo				
Table 16	Degree of MR in preoperative echo	106			
Table 17	Chi-Square Tests for degree of MR in	106			
	preoperative echo				
Table 18	Number of vessel diseased in	107			
	preoperative coronary angiography				
Table 19	Chi-Square Tests for diseased vessels	108			
Table 20	Statistics of total bypass time	109			
Table 21	Statistics of aortic cross clamp time	109			
Table 22	Statistics of cardioplegia types				
Table 23	Chi-Square Tests for cardioplegia				
Table 24	Group Statistics of distal anastomosis				
Table 25	Statistics of IABP use				
Table 26	Chi-Square Tests for IABP use				
Table 27	Statistics of inotropes used				
Table 28	Chi-Square Tests for inotropes used	115			
Table 29	Statistics of ventilation time in hours	116			
Table 30	Statistics of ICU stay in days	116			
Table 31	Statistics of mortality	117			
Table 32	Chi-Square Tests for mortality	117			
Table 33	Statistics of CVS	119			
Table 34	Chi-Square Tests for CVS	119			
Table 35	Statistics of liver impairment	121			
Table 36	Chi-Square Tests for liver impairment	121			

Table	Títle						
Table 37	Statistics of renal impairment	123					
Table 38	Chi-Square Tests for renal impairment						
Table 39	Statistics of post operative echo	125					
Table 40	Statistics of post operative echo by T	125					
	test						
Table 41	Statistics of degree of MR in post	126					
	operative echo						
Table 42	Chi-Square Tests for MR in post	127					
	operative echo						
Table 43	Statistics of residual MR related to sex	128					
	in both groups						
Table 44	Statistics of residual MR related to the	128					
	degree of MR in preoperative echo in						
	both groups						
Table 45	Statistics of residual MR related to wall	129					
	motion abnormality in both groups						
Table 46	Statistics of residual MR related to jet	130					
	direction in both groups						
Table 47	Statistics of residual MR related to basal	131					
	aneurysm and dyskinesia in both						
	groups						
Table 48	Statistics of residual MR related to use	131					
	of complete ring annuloplasty in both						
	groups						
Table 49	Statistics of residual MR related to age,	132					
	EDD, ESD, and EF in both groups						
Table 50	Statistics of pre and post operative echo	133					

Table	Títle						
Table 51	Statistics of results of echo in both	134					
	groups						
Table 52	Statistics of mortality in both groups						
Table 53	Chi-Square Tests for mortality in both	135					
	groups						
Table 54	Statistics of mortality related to sex in both groups	136					
Table 55	Chi-Square Tests for mortality related	137					
	to sex in both groups						
Table 56	Statistics of mortality related to HTN in	137					
	both groups						
Table 57	Chi-Square Tests for mortality related						
	to HTN in both groups						
Table 58	Statistics of mortality related to DM in	138					
	both groups						
Table 59	Chi-Square Tests for mortality related	139					
	to DM in both groups						
Table 60	Statistics of mortality related to degree	139					
	of MR in preoperative echo in both						
	groups						
Table 61	Chi-Square Tests for mortality related	140					
	to degree of MR in preoperative echo in						
	both groups						
Table 62	Statistics of mortality related to vessel						
	diseased in both groups						
Table 63	Chi-Square Tests for mortality related						
	to vessel diseased in both groups						

Table	Títle					
Table 64	Statistics of mortality related to	141				
	cardioplegia in both groups					
Table 65	Chi-Square Tests for mortality related					
	to cardioplegia in both groups					
Table 66	Statistics of mortality related to IABP in	142				
	both groups					
Table 67	Chi-Square Tests for mortality related	143				
	to IABP in both groups					
Table 68	Statistics of mortality related to	143				
	inotropes in both groups					
Table 69	Chi-Square Tests for mortality related	144				
	to inotropes in both groups					
Table 70	Statistics of mortality related to CVS in					
	both groups					
Table 71	Chi-Square Tests for mortality related	145				
	to CVS in both groups					
Table 72	Statistics of mortality related to liver	145				
	impaired in both groups					
Table 73	Chi-Square Tests for mortality related	146				
	to liver impaired in both groups					
Table 74	Statistics of mortality related to renal	146				
	impaired in both groups					
Table 75	Chi-Square Tests for mortality related	147				
	to renal impaired in both groups					
Table 76	Statistics of mortality related to echo	148				
	and ICU					
Table 77	Logistic regression	149				

List of Abbreviations

ACEi	 Angiotensin-converting inhibitors		enzyme			
AMI	 Anterior Myocardial Infarction					
AML	 Anterior Mitral Leaflet					
APM	 Anter	o-Lateral papil	llary mu	scle		
ATA	 Anter	ior leaflet teth	ering an	gles		
BSA	 Body	Surface Area				
CABG	 	dilol Post- Infa		vival		
CIMR	 Controlled Evaluation Chronic Ischemic mitral regurgitation					
CPM	 Cardio-pulmonary bypass					
CRT	 Cardiac Resynchronization Therapy					
DD	 Diastolic dysfunction					
Dp	 delta pressure					
Dt	 delta time					
EDD	 End Diastolic Dimension					
EF	 Ejection Fraction					
ERO	 Effective Regurgitant Orifice					
ESD	 End Systolic Dimension					
IABP	 Intra-aortic balloon pump					
IMLC	 Incomplete mitral leaflet closure					
IMR	 Ischemic mitral regurgitation					
IPMD	 Interpapillary muscle distance					
LA	 Left Atrial					
LAD	 Left a	nterior descen	ding			
LIMA	 Left i	nternal mamar	y artery	,		
LV	 left ve	entricle				
LVESD	 Left Ventricular End Systol					
	Dime	nsion				

List of Abbreviations

LVESV	 Left	Ventricu	ılar	End	Systolic
	Volume				
MI	 myocardial infarction				
MR	 Mitral	regurgita	ation		
MRI	 Magne	etic Resoi	nance	Imagin	g
MV	 Mitral	valve			
MVA	 Mitral	Valve An	nulop	olasty	
MVR	 Mitral	Valve Re	place	ment	
PM	 Papilla	ary Musc	le		
PPM	 Posteromedial Papillary Muscle				
PML	 Posterior mitral leaflet				
PTA	 Posterior leaflet tethering angles				
PTFE	 polytetrafluoroethylene.				
PTMA	 Percutaneous transvenous mitral				
	annuloplasty				
RIME	 Rando	mized	Isch	nemic	Mitral
	Evalua	ation			
RJA	 Regurgitant Jet Area				
RV	 Regur	gitation \	/olum	e	
SAVE	 Surviv	al .	And	Vei	ntricular
	Enlarg	gement			
STS	 Society of Thoracic Surgeons				
SWMA	 Segme	ental Wal	l Moti	on abno	rmality
TA	 Tentir	ng area			
TEE	 Transoesophageal				
	echocardiography				
TH	 Tentir	ng height			
TTE	 Transthoracic echocardiography				

Introduction

Ischemic mitral regurgitation (IMR) is a common (approximately 20%) complication after completed myocardial infarction (MI), which follows more frequently an inferior Myocardial Infarction (MI) (38%) rather than an antero-septal one (10%).¹

It has been associated with diminished survival compared with non ischemic mitral regurgitation. The increased mortality risk is independent of the severity of left ventricular (LV) dysfunction but relates to the quantified degree of MR.²

However, the prognostic implications of IMR in the chronic post MI phase are uncertain. In pioneering series that underscored the potential importance of IMR, patients were often included early after MI, and decreased survival of patients with IMR may have been due to inclusion of acute MI.

The mechanisms at the base of IMR are different: 1) annular dilatation; 2) displacement of both papillary muscles (PM) apically, posteriorly and laterally in case of global left ventricle (LV) dilatation, with consequent increase of tethering upon closing forces and incomplete

coaptation of mitral leaflets; 3) local malfunction of the LV wall adjacent to a single Papillary Muscle (PM) (more frequently the posterior one).⁴

Despite these Findings, the debate regarding surgical indications for Mitral Valve (MV) surgery is still open. For patients with ischemic mitral regurgitation (MR), it is not clear that mitral valve (MV) repair with CABG is beneficial or mitral valve replacement with CABG is more beneficial.⁵

Transthoracic echocardiography is a key examination in patient with ischemic mitral regurge. Dobutamine stress echocardiography is widely used for the assessment of myocardial viability and\or ischemia. However, it does not provide further information regarding ischemic mitral regurge. The regurgitant volume generally decreases during dobutamine infusion.⁶

Surgical treatment of functional ischemic mitral regurgitation generally combines CABG and correction of mitral regurgitation by prosthetic valve replacement or valve repair. Whatever the technique used, it should be stressed that surgery for functional ischemic mitral regurge carries a much higher risk than for non ischemic mitral regurgitation. In most recent series, operative mortality is approximately 10 % ^{7,8,9,10}.

Aim of the Work

This is a retrospective study to review the surgical intervention for treatment of ischemic mitral regurgitation by CABG plus repair or replacement of mitral valve by studying 100 patients divided into two groups. This study will search the patients in two centers: cardiothoracic department of Nasser institute and cardiothoracic department of Ain Shams University in a sample of Egyptian patients.