

COMPARISON BETWEEN LIGHT CURE AND CHEMICAL CURE GLASS IONOMER CEMENT IN ORTHODONTIC BANDING (AN IN VITRO STUDY)

THESIS Submitted In Partial Fulfilment Of The Requirements For Master's Degree Of Clinical Dental Science (Orthodontics)

By
Hawa Fouad Fellagh
B.D.S Dental School Al- Fateh University
Tripoli-Lybia
2001

Faculty of Oral and Dental Medicine Cairo University 2009

SUPERVISORS

Prof. Dr . Hoda Mohamed Abdel-Aziz

Professor Of Orthodontics,

Faculty Of Oral And Dental Medicine,

Cairo University

Prof.Dr .Manal Yehia Foda

Professor Of Orthodontics,

Faculty Of Oral And Dental Medicine,

Cairo University

DEDICATION

TO MY LOVELY FAMILY

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to *Prof. Dr.Nagwa El-Mangoury* Professor and Chairmain of the Orthodontics Department, Faculty of Oral and Dental Medicine, Cairo University, for her generosity by enrolling me in such a precious and competitive team.

Words can never express my thankfulness to *Prof.Dr.Hoda Mohamed Abdel Aziz* Professor of Orthodontics, Faculty of Oral and Dental Medicine, Cairo University, for suggesting the point of research, her scrupulous supervision, constant encouragement, unlimited support and valuable guidance which will never be forgotten.

I am also thankful to *Dr. Manal Yehia Foda* Associate Professor of Orthodontics, Faculty of Oral and Dental Medicine ,Cairo University, for her beneficial advice ,positive criticism ,valuable discussion and keen supervision.

I would like to thank *Dr.Mohsen Abi-Elhasan* professor of Operative dentistry, Faculty of Oral and Dental Medicine, Cairo University for his untiring help, his meticulous guidance, generous scientific supervision during this work.

My thanks are extended to *Dr. Mohamed Elsaman* Lecturer of biomaterial department Faculty of Dental Medicine, Al-Azhar University, for his assistance and help during the bond strength measurement and statistical analysis.

My devoted parents and my husband for their spiritual support ,patience and encouragement throughout the course of this study.

Last but not least ,I would like to thank all the staff members and collegues of the Department of Orthodontics, Faculty of Oral and Dental Medicine ,Cairo University, for their help and support.

RECOMMENDATION

From the previous results of this study we recommend the following:

- 1. The Fuji-Ortho LC glass ionomer cements showed a superior bond strength which was statistically significant than the Medicem chemical cure glass ionomer cement in restored teeth with either amalgam and posterior composite restoration.
- 2. The light cure cement is better to be used than the chemical one.
- 3. As the fixed orthodontic therapy takes longer time more than one month (which is the longest test time of this study) and as with any in vitro study, many factors in the oral environment are impossible to reproduce in the laboratory. Further work is required to determine whether the finding of this in vitro study are in witness in clinical practice.

TABLE OF CONTENTS

List of figures	ii
List of tables.	iv
Introduction	1
Review of literature	3
Aim of the study	19
Materials and methods	20
Results	35
Discussion	56
Summary and conclusions	62
Recommendation	64
References	65
Arabic summary	

LIST OF FIGURES

Figure number	Legend	Page
Fig. (1):	Cavity standardization	22
Fig. (2):	Cavity preparation	22
Fig. (3):	Banded tooth specimen	24
Fig. (4):	Different cements.	26
Fig. (5):	Light curing unit	27
Fig. (6):	Incubation of the specimens	27
Fig. (7):	Universal testing machine.	29
Fig. (8):	Force application using the universal testing machine.	30
Fig. (9):	Debanding using the universal testing machine	30
Fig. (10):	Load deflection curve	31
Fig. (11):	Predominant site of bond failure of control group	33
Fig. (12):	Predominant site of bond failure of amalgam	
	group	33
Fig. (13):	Predominant site of bond failure of composite	
	group	34
Fig.(14):	Mean value of shear bond strength (MPa) for each	
	adhesive group with different subsrates	36
Fig. (15):	Shear bond strength mean values (MPa) for each	
	adhesive group with different substrates	37
Fig. (16):	Shear bond strength mean values (MPa) for each	
	adhesive group with control substrate	38

Fig. (17):	Failure mode of different adhesive groups with control substrate.	40
Fig. (18):	Shear bond strength mean values (MPa) for each	
	adhesive group with amalgam substrate	41
Fig. (19):	Failure mode of different adhesive groups with	
	amalgam substrate	43
Fig. (20):	Shear bond strength mean values (MPa) for each	
	adhesive group with composite substrate	44
Fig. (21):	Failure mode of different adhesive groups with	
	composite substrate	46
Fig. (22):	Shear bond strength mean values (MPa) for each	
	substrate group with Medi-Cem adhesive	47
Fig. (23):	A column chart of shear bond strength mean values	
	(MPa) for each substrate group with Fuji-Ortho LC	
	adhesive	49
Fig. (24):	Shear bond strength mean values(MPa) for each	
	substrate group with Multi-Cure adhesive	51
Fig. (25):	Shear bond strength mean values (MPa) for each	
	substrate group with Opti-Band adhesive	53
Fig. (26):	Shear bond strength mean values (MPa) for each	
	adhesive group with different substrates	55

LIST OF TABLES

Table	Legend	Page
number		
Table (1) :	Testing groups	21
Table (2) :	Testing materials.	25
Table (3):	Descriptive statistics of shear bond strengths	
	(MPa) for each adhesive group with different	26
Table (4):	Subsrate	36
Table (4).	(MPa) for each adhesive group with control	
	substrate.	37
Table (5) :	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	
	for adhesive groups with control substrate	38
Table (6):	Pair-wise Tukey's post-hoc multiple comparison	
	test for adhesive groups with control substrate	39
Table (7):	Chi-square test for the failure mode of different	
	adhesive groups with control substrate	39
Table(8) :	Descriptive statistic of shear bond strengths	
	(MPa) for each adhesive group with amalgam	
	substrate	40
Table (9) :	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	
	for adhesive groups with amalgam substrate	41
Table(10):	Pair-wise Tukey's post-hoc multiple comparison	
	test for adhesive groups with amalgam substrate	42

Table (11):	Chi-square test for the failure mode of different	
	adhesive groups with amalgam substrate	42
Table (12):	Descriptive statistics of shear bond strengths	
	(MPa) for each adhesive group with composite	
	substrate	43
Table (13) :	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	
	for adhesive groups with composite substrate	44
Table (14) :	Pair-wise Tukey's post-hoc multiple comparison	
	test for adhesive groups with composite substrate.	45
Table (15):	Chi-square test for the failure mode of different	
	adhesive groups with composite substrate	45
Table (16) :	Descriptive statistics of shear bond strengths	
	(MPa) for each substrate group with Medicem	
	Adhesive	46
Table (17):	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	
	for each substrate group with Medicem adhesive	47
Table (18):	Pair-wise Tukey's post-hoc multiple comparison	
	test for substrate groups with Medicem adhesive	48
Table (19) :	Descriptive statistics of shear bond strengths	
	(MPa) for each substrate group with Fuji-Ortho	
	LC adhesive	48
Table (20):	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	

	for each substrate group with Fuji-Ortho LC	49
	adhesive	
Table (21) :	Pair-wise Tukey's post-hoc multiple comparison	
	test for substrate groups with Fuji-Ortho LC	
	adhesive	50
Table (22):	Descriptive statistics of shear bond strengths	
	(MPa) for each substrate group with Multicure	
	Adhesive	50
Table (23):	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	
	for each substrate group with Multicure adhesive.	51
Table (24) :	Pair-wise Tukey's post-hoc multiple comparison	
	test for substrate groups with Multicure	
	adhesive	52
Table (25):	Descriptive statistics of shear bond strengths	
	(MPa) for each substrate group with Optiband	
	adhesive	52
Table(26) :	One way analysis of variance ANOVA	
	comparing between shear bond strength (MPa)	
	for each substrate group with Optiband adhesive	53
Table (27):	Pair-wise Tukey's post-hoc multiple comparison	
	test for substrate groups with Optiband adhesive	54
Table (28):	Two way analysis of variance ANOVA test of	
	significance comparing variables affecting shear	
	bond strength	54

 Table (29):
 Results of Kappa statistic for the inter-observer

 agreement among different operators.....
 55

INTRODUCTION

Retention of orthodontic molar bands is a basic requirement of fixed appliance orthodontic treatment. Banding of molar has the advantage over bonded attachments in that it resists occlusal interferences more readily and hence more reliable during treatment band retention is provided mechanically by the band's close adaptation to the tooth surface assisted by the cement lute.

Initially zinc phosphate cement has been used widely for band cementation but it has several disadvantages for this purpose being brittle, having a relatively high solubility in the mouth and a weak adherence to tooth substance. It doesn't form any degree of chemical bond to either stainless steel or enamel and relies on mechanical means for its retentive effect.

Other dental cements have been developed that overcome some of these weaknesses. Polycarboxylate cements, which react chemically with enamel and stainless steel, were introduced to the orthodontic speciality in the early 1970s. Both laboratory and clinical studies found these cements to be suitable for band cementation but their short setting time and high viscosity weakened their popularity.

Glass ionomer cements (GIC) were introduced in 1971 and are now in wide spread use for band cementation these cement bond to both enamel and metal. Fluoride release has been measured during the glass ionomer cement setting reaction and after setting. Additional fluoride release has been demonstrated when GIC are exposed to acids. Compared with polycarboxylate cements GIC show higher bond strength