Pharmacotherapy for refractory cancer pain

An essay

Submitted for partial fulfillment of master degree in Anesthesiology

Presented by

Ayat Abd Elfattah Hassan Mohammad

M.B.B.CH, faculty of medicine Cairo University

SUPERVISED BY

Prof. Dr. Magdi Ramzi Iskander

Professor of anesthesiology and pain relief NCI, Cairo University MD, FFARCS, FIPP

Prof. Dr. Salwa Hefnawy

Professor of anesthesiology Faculty of Medicine, Cairo University

Dr. Gomaa Zohry Hussien

Assistant professor of anesthesiology and pain Faculty of medicine, Cairo University

Cairo University 2010

Dedication

To my Mother and Father

for encouragement, support, understanding and love.

To My Sister Dr. May and my Brother Hassan

for supporting, understanding and giving me the help to finish this work

To My Beloved Husband Dr. Ahmed Abdellattif

For being by my side all through

To the soul of Prof Dr Mohamed Omar Tawfik

Who inspired me to do this work

Acknowledgement

First of all, I want to **THANK GOD** for supporting me and guiding me throughout my life.

I wish to express my deep appreciation and gratitude to **Professor Dr. Magdi Ramzi Iskander**, Professor of anesthesia L pain relief, National Cancer Institute, Cairo University, for his academic supervision, guidance, constant encouragement and valuable advice, which was essential for the completion of this essay.

My sincere gratitude to **Prof. Dr. Salwa Hefnawy,** Professor of anesthesia Faculty of Medicine, Cairo University, for her unforgettable help, continuous inspiration, generosity in giving her time, effort and advice and her continuous assistance during the course of this essay.

I am also grateful to **Dr. Gomaa Zahry Hussien**, Assistant Professor of anesthesia Faculty of Medicine, Cairo University, for his unique effort, considerable help, assistance and knowledge he offered me throughout the performance of this work.

ABSTRACT

The most effective and most appropriate treatment for moderate to severe cancer-induced pain, and they remain the best front-line treatment for cancer pain patients. However, care must be taken to closely monitor patients for potential adverse effects of opioids.

KEY WORDS

Pharmacotherapy

Refractory

pain

- Index

Index

	Page
Introduction	1-3
Chapter 1	
General Pharmacological Rules	4-12
Introduction	4
Individualized dosage	5
Scheduled opioid administration	5
Dosing of Opioids in Chronic patients	6
Routes of administration	7
1-Oral	8
2-Transdermal	8
3-Transmucosal/buccal	9
4-Intramuscular	10
5-Patient-controlled analgesia	10
6-Rectal	11
7-Epidural and intrathecal (intraspinal)	11
Drug combinations that enhance analgesia	12
Chapter2	
Role of NSAIDs in Cancer Pain	13-22
Introduction	13
Pharmacodynamics and pharmacokinetics	14
Mechanism of action	15
Adverse effects of NSAIDs	17
Gastrointestinal	17
Respiratory	17
Renal	18
Cardiovascular	18
Coagulation	19
Hepatic	20
Drug Interactions	20
Compounds of Special Interest	21
NSAIDs with high potency and long elimination half-life	22
Chapter 3	
The pathophysiology of the use of the NSAIDs in bony pain	23-27
Introduction	23 27
Mechanisms of Bone Pain	
	23

	- Index
Chapter 4	
Classification of the opioid analgesics	28-49
Introduction	28
Morphine-like agonists	30
Agonist-antagonist analgesics	30
Partial Agonist	31
Clinical Principles in Pharmacology of Opioid Analgesia	31
Opioids for mild to moderate pain	31
Codeine	32
Dihydrocodeine	32
Tramadol	33
Opioids for moderate to severe pain	34
Oral morphine	34
Other routes of morphine administration	35
Morphine metabolism	35
Hydromorphone	36
Methadone	38
Oxycodone	39
Fentanyl	39
Other routes of fentanyl administration	40
Meperidine	41
Coadministration of different opioids	41
Analgesic Strategies for Poorly Responsive Patients	43
General Principles for the Use of Opioids	44
Opioid side effects and management	44
1) Sedation	45
2) Constipation	46
3) Nausea and vomiting	46
4) Pruritus	47
5) Opioid-induced neurotoxicity	47
Opioid-induced hyperalgesia	48
Opioid rotation in the management of refractory cancer pain	49
Chapter 5	
Role of Adjuvant Analgesics in Cancer Pain Management	53-66
Classification of the adjuvant analgesics	53

CII

5455

55

56

5758

58

Choice of Adjuvant Analgesics

Categorization of Side Effects of TCAs

Anticonvulsant analgesics Gabapentin and pregabalin

Antidepressant Mechanisms of Analgesia

Antidepressant Drugs Tricyclic Antidepressants

	= Index	i
Mechanism of action	58	
Pharmacodynamics and kinetics	58	
Corticosteroids	61	
N-methyl-D-aspartate receptor antagonists	62	
Baclofen	63	
Topical Analgesics	64	
Using adjuvant analgesics in the management of cancer pain	65	
Combination of Adjuvant Analgesics	66	
Chapter 6		
Combination therapy for refractory cancer pain	67-70	
Introduction	67	
(A) Combination of Fentanyl-TTS and Tramadol	67	
(B) Combination of Morphine and Gabapentin	68	
(C) Combination of sustained-release morphine and sustained-release oxycodone	69	
(D)Controlled-Release Oxycodone and Pregabalin	70	
Chapter 7		
Difficult problems in management of cancer pain	72-87	
Introduction	72	
(A)Breakthrough pain in cancer patients	73	
(B)Neuropathic pain in cancer patients	78	
(C) Bone Pain in cancer patients	81	
(D) Acute pain associated with oral Mucositis	86	
Summary	88-89	
References	90-130	
Arabic summary		

List of tables

	Figure
(Table1) Potential applications of the different routes of opioid administration	7
(Table2) Physicochemical and pharmacological data of acidic antipyretic analgesics	20
(Table3) Opioid analgesics commonly used for severe pain	42
(Table4) Opioid side effects	45
(Table5) Approaches to management of acute episodes of OIN	49
(Table6) Dose Conversion Guideline	50
(Table7) Equianalgesic conversion table	51
(Table8) Adjuvant major classes (according to their role as an analgesic)	55
(Table9) Categorization of Side Effects of TCAs	56
(Table10) Analgesic Anticonvulsants used in Neuropathic pain	60
(Table11) Adverse effects, prescribing precautions, and potential drug interactions with adjuvant analgesics	64
(Table12) Classification of neuropathic cancer pain syndromes	79

List of Figures

	Figure
Fig. (1), WHO pain step ladder	4
Fig. (2), Arachidonic acid metabolism	15
Fig. (3), The proposal that the activities of the two COX isoforms can be discretely compartmentalized prompted a new generation of NSAIDs that selectively inhibit COX-2.	16
Fig.(4), Opioid mechanism of action	28
Fig.(5), A: Typical BTP pattern requiring rescue doses	74
Fig.(6), Peaks of plasma concentration after oral morphine (O-MO), IVMO, and transmucosal fentanyl (TM fentanyl)	77

List of Abbreviations

5-HT 5-hydroxytreptamine (serotonin).

ACE Angiotensin converting enzyme.

ATC Around the clock

BTP Breakthrough pain.

CAMP Cyclic adenosine monophosphate.

COX-1 Cyclooxygenases 1.

COX-2 Cyclooxygenases 2.

CSI Continuous subcutaneous infusion.

CVA Cerebrovascular accident.

CYP 450 Cytrochrome P-450.

DPH Dextropropoxyphene.

FBT Fentanyl buccal tablet.

GABA gamma-aminobutyric acid type B.

IRM Immediate-release morphine.

MAOI Monoamine inhibitor.

MG3 Morphine-3-glucuronide.

MG6 Morphine-6-glucuronide.

MI Myocardial infarction.

MOR Mu-Opioid receptor.

N/A Not available.

NMDA N-methyl-D-aspartate.

NSAIDs Non steroidal anti-inflammatory drugs.

OEI Opioid escalation index.

OIN Opioid induced neurotoxicity.

OTFC Oral-Transmucosal fentanyl citrate.

PCA Patient controlled analgesia.

PGH2 Prostaglandin H2.

PGI2 Prostaglandin I2.

ROS Reactive oxygen species.

SSRI Serotonin-selective-reuptake inhibitor

TCAs Tricyclic antidepressants

TTS Through the skin.

TXA2 Thromboxane A2.

VAS Visual analogue scale.

WHO World health organization.

INTRODUCTION

Introduction

Pain is the first symptom of cancer in 20–50% of all cancer patients, and 75–90% of advanced or terminal cancer patients suffer from chronic pain syndromes related to chemotherapy, failed treatment, and/or tumor progression.^{1,2}

Cancer patients can experience pain with varying degrees of intensity and frequency at multiple anatomical locations. Cancer pain is multifaceted, with clinical descriptors including acute, chronic, nociceptive (somatic), visceral, and neuropathic³ It consists of complex mixtures of nociceptive and neuropathic types of pain that are likely to be driven through different mechanisms.³

Although opioids are recommended for treatment of moderate to severe cancer pain, several barriers can limit the effective treatment of such pain³ Many of these barriers hinge on opioid related concerns held by physicians, patients, and patients' families³ Adding to concerns related to fear of addiction, opioid administration can be associated with severe, sometimes debilitating side effects including somnolence, mental confusion, and constipation.⁴

Moreover, some patients develop analgesic tolerance to opioids, in which greater doses of opioids are required to produce effective pain management.^{3,5}

Importantly, the chronic nature of cancer pain often requires prolonged opioid administration through controlled-release tablets, repeated bolus injections, or transdermal patches.⁶⁻⁸

Another potential problem with the use of opioids in treating cancer pain is decreased analysesic efficacy, which can potentially arise from multiple mechanisms, including the development of receptor desensitization, opioid-induced hyperalgesia, subtle and intermittent withdrawal, and psychological factors.^{5,9}

In addition, increased doses of opioids may be required because of advancement of the disease, resulting in greater pain¹⁰. Clinical studies have reported that opioids administered by different routes of administration (transdermal, oral, intrathecal, and intravenous) can unexpectedly produce hyperalgesia and allodynia, particularly during rapid dose escalation.¹¹

Successful opioid treatment of any duration depends on achieving a favorable balance between analgesia and adverse effects^{1, 12} Importantly, there is great interindividual variability in opioid effects; even with a similar type or severity of pain, the effective opioid dose as well as the relative toxicity ratios may vary greatly across patients.^{1, 12}

Effective pain management with opioids is dependent on understanding of opioid pharmacology, including different formulations, the impact of route of administration, and the potential for interactions with concurrent medications. These concepts are important for selection of the initial opioid, as well as for opioid switching and rotation, to maintain effective pain management.

Antipyretic analgesics are the first line of implementation according to the sequence-staged scheme of the World Health Organization (WHO) for cancer pain. With progressive incrementation in the pain state; their use is supplemented by the addition of opioid drugs. The efficacy of NSAIDs in patients with tumor pain has been shown in numerous clinical trials. 49,50

Coanalgesics are drugs administered in conjunction with NSAIDS and opioids that may enhance the analgesic activity of the NSAIDs or opioids,

have independent analgesic activity in certain pain states, such as neuropathic pain, or may counteract some of the adverse side effects associated with NSAIDS or opioids.¹

Clinically, Coanalgesics consist of a diverse range of drug classes, including anticonvulsants (e.g., gabapentin, pregabalin), antidepressants (e.g., tricyclic antidepressants, selective serotonin reuptake inhibitors, and serotonin norepinephrine reuptake inhibitors), N-methyl-D-aspartate (NMDA) receptor antagonists (e.g., ketamine), corticosteroids, skeletal muscle relaxants, local anesthetics, and alpha-2 adrenergic agonists (e.g., clonidine)¹ Coanalgesics are frequently administered with opioids in efforts to diminish the dose required for effective pain management and reduce adverse effects.¹³

Moreover, the use of coanalgesics that target neuropathic pain may be particularly important because such pain is resistant to opioids, and it occurs in 40–50% of patients with cancer pain.¹⁴

Overall, multimodal therapy for pain management is recommended¹ for two main reasons: (I) Coadministration of adjuvants that block adverse effects such as nausea, constipation, and opioid-induced hyperalgesia will improve pain management and decrease adverse side effects, thus improving the patient's quality of life; and (II) Combination pharmacotherapy is often better than opioids alone due to multiple mechanisms of action, particularly given the multifaceted nature of cancer pain regarding neuropathic, inflammatory, and mechanical qualities.^{1,15}