DIALLEL ANALYSIS TO SOME HYBRIDS OF MELON

By

SUZY MOHAMED KAMEL ABD EL-AZIZ

B.Sc. Agric. Sci. (Vegetable), Fac. Agric., Cairo Univ., 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Vegetable Crops)

Department of Vegetable Faculty of Agriculture Cairo University EGYPT

2010

APPROVAL SHEET

DIALLEL ANALYSIS TO SOME HYBRIDS OF MELON

M.Sc. Thesis In Agric. Sci. (Vegetable)

By

SUZY MOHAMED KAMEL ABD EL-AZIZ

B.Sc. Agric. Sci. (Vegetable), Fac. Agric., Cairo Univ., 2004

Approval Committee

Dr. IBRAHIM IBRAHIM EL-OKSH Professor of Vegetable Crops, Fac. Agric., Ain shams University	
Dr. MOHAMED ABD EL-MAGEED BADAWI	
Dr. AHMED ALI GHARIB	
Assistant Professor of Vegetable Crops, Fac. Agric., Cairo University	

Date: 31 / 10 / 2010

SUPERVISION SHEET

DIALLEL ANALYSIS TO SOME HYBRIDS OF MELON

M.Sc. Thesis
In
Agric. Sci. (Vegetable Crops)

By

SUZY MOHAMED KAMEL ABD EL-AZIZ B.Sc. Agric, Sci. (Vegetable Crops), Fac. Agric., Cairo Univ.,2004

SUPERVISION COMMITTEE

Dr. AHMED ALI GHARIB
Assistant Professor of Vegetable Crops, Fac. Agric., Cairo University

Dr. YASSER MOHAMED AHMEDLecturer of Vegetable Crops, Fac. Agric., Cairo University

Dr. YOUSOF TALAT EMAM EL-LITHY Head Researcher of Vegetable Crops, Hort. Res. Inst., ARC.

تحليل الداى اليل لبعض هجن الشمام

رسالة ماجستير في العلوم الزراعية (خضر)

مقدمة من

سوزى محمد كامل عبد العزيز بكالوريوس في العلوم الزراعية (خضر) - كلية الزراعة - جامعة القاهرة، ٢٠٠٤

لجنة الإشراف

دكتور/ أحمد على غريب أستاذ مساعد الخضر – كلية الزراعة - جامعة القاهرة

دكتور/ ياسر محمد أحمد مدرس الخضر – كلية الزراعة - جامعة القاهرة

دكتور/ يوسف طلعت أمام الليثى رئيس بحوث - معهد بحوث البساتين - مركز البحوث الزراعية

تحليل الداى اليل لبعض هجن الشمام

رسالة ماجستير في العلوم الزراعية (خضر)

مقدمة من

سبوزى محمد كامل عبد العزيز بكالوريوس في العلوم الزراعية (خضر) - كلية الزراعة – جامعة القاهرة ،٢٠٠٤

لجنة الحكم
 كتور/ إبرهيم إبرهيم العكش
.كتور/ محمد عبد المجيد بدوى ستاذ الخضر ـ كلية الزراعة ـ جامعة القاهرة
 .كتور/ أحمد على غريب ستاذ الخضر المساعد _ كلية الذراعة _ حامعة القاهر

التاريخ ۳۱ /۲۰۱۰/۱۰

تحليل الداى اليل لبعض هجن الشمام

رسالة مقدمة من

سوزى محمد كامل عبد العزيز بكالوريوس في العلوم الزراعية (خضر) - كلية الزراعة _ جامعة القاهرة، ٢٠٠٤

للحصول على درجة

ماجستير

في

العلوم الزراعية (خضر)

قســــم الخضـــر كليــة الزراعــة جامعـة القـاهرة مصـــر

۲.1.

Name of Candidate: Suzy Mohamed Kamel Degree: M.Sc.

Title of Thesis: Diallel Analysis to Some Hybrids of Melon

Supervisors: Dr. Ahmed Ali Gharib

Dr. Yasser Mohamed Ahmed Dr. Yousof Talat Emam EL-Lithy

Department: Vegetable Crops

Approval: 31 /10 /2010

ABSTRACT

This study was carried out at El-Kanater Experimental Station, Kaliobia Governorate during the period of 2007-2009. Five parental lines of melon (*Cucumis melo* L.) were used in this study, namely: PI 169374 (P_1), PI 175673 (P_2), Trooper (P_3), Kahera 6 (P_4) and Ananas EL- Dokki (P_5). Crossed between them was done to obtain 10 P_1 hybrids, crosses among these cultivars were made in diallel mating design. All genotypes were evaluated in fall season of 2008 and summer season of 2009 to estimate heterosis, general and specific combining ability for vegetative and flowering traits, yield and its components and fruit characters. In addition to evaluate these genotypes with the commercial hybrid (primal) to powdery mildew disease.

Heterosis based on the mid-parent and high-parent was significant with positive or negative values for all studied traits in the two seasons.

Highly significant differences for general and specific combining ability were obtained for all studied traits. The ratio of GCA/SCA mean squares for total yield (fruit weight), average fruit weight, net density, flesh thickness and T.S.S. indicated The predominance role of additive gene action in the expression of these characters in both seasons. On the other hand, this ratio for the first female flower anthesis revealed that additive and non- additive gene effects were the same magnitude in the inheritance of this character especially in fall season.

Estimates of GCA effect revealed that the inbred lines Trooper and Ananas El-Dokki had the highest positive values for yield component, net density and flesh thickness in both seasons. The lines PI175673 and Ananas El-Dokki showed negative GCA effects for the first female flower anthesis and the crosses PI 175673 \times Trooper , PI 175673 \times Kahera 6 and Trooper \times Ananas El-Dokki showed significant negative SCA values for date of the first female flower anthesis in both seasons. This indicate that, These parental lines and crosses were earlier than those having positive GCA and SCA of flowering date. Finally, the crosses PI169374 \times Trooper and Trooper \times Ananas El-Dokki in fall season, PI175673 \times Trooper and Kahera 6 \times Ananas El-Dokki in summer season were the promising hybrids for most traits under the study.

Evaluation of the five parents and their 10 F1hybrids to powdery mildew showed that, the parents P_1 , P_2 and hybrids $P_1 \times P_2$, $P_1 \times P_4$, $P_2 \times P_4$ showed resistance.

Key words: Melon, heterosis, general and specific combining ability, additive and non – additive gene action, diallel analysis.

ACKNOWLEDGEMENT

As I began this work in the name of ALLAH.I would like to end it also by thanking ALLAH who gives me the power, sufferance and help to finish it.

The writer is deeply grateful to **Dr.** Ahmed Ali Gharib, Assistant Professor of Vegetable Crops, Faculty of Agriculture, Cario University for supervision, continuous interest, valuable advises criticism and guidance throughout the course of this study and for his great help in preparing and reviewing this manuscript.

The writer is deeply grateful to **Dr. Yasser Mohamed**Ahmed, Lecturer of Vegetable Crops, Faculty of Agriculture,
Cario University for supervision, continuous interest,
valuable advises criticism and guidance throughout the course
of this study and for his great help in preparing and
reviewing this manuscript.

Many appreciation and thanks are due to to Dr. Yousof Talat Emam El-Lithy, Head Researcher of Cross Pollinated Vegetable Research Department, Horticulture Research Institute, ARC, for suggesting the problem, for supervision, continuous interest, advice and great help in preparing and reviewing this manuscript and completing this work.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my parents and brothers for all the support they lovely offered along the period of my post graduation as well as to my fiancé Emad for his help and my friends especially Rania.

.

اسم الطالب: سوزى محمد كامل عبد العزيز الدرجة: ماجستير

عنوان الرسالة: تحليل الداى اليل لبعض هجن الشمام

المشرفون: دكتور: أحمد على غريب

دكتور: ياسر محمد أحمد

دكتور: يوسف طلعت أمام الليثي

قسم: الخضر فرع: تاريخ منح الدرجة: ٣١ / ٢٠١٠/

المستخلص العربي

أجريت الدراسة بمزرعة محطة البساتين بالقناطر الخيرية – محافظة القليوبية خلال الفترة من عام ٢٠٠٧حتى ٢٠٠٩ حيث استخدم في هذه الدراسة ٥ أباء وأجرى بينهم تهجين نصف دائري وهم ٢٠٠٩ حيث استخدم في هذه الدراسة ٥ أباء وأجرى بينهم تهجين نصف دائري وهم ١٠٠٩ والمجرى المقاومتها للبياض الدقيقي مع الهجين التجارى بريمال.

أخذت القياسات اللازمة على النموات الخضرية وصفات المحصول وبعد تحليل البيانات المتحصل عليها أتضح أن:

أظهرت قوة الهجين بالنسة لمتوسط الأباء والأب الأعلى معنوية موجبة وسالبة لمعظم الصفات المدروسة.

أظهرت القدرة العامة والخاصة على الائتلاف وجود اختلافات عالية المعنوية لكل الصفات المدروسة .

أظهرت النسبة المحسوبة بين متوسط مربعات الانحرافات للقدرتين العامة والخاصة على الائتلاف أن الفعل المضيف للجينات كان يلعب دورا أكثر أهمية من الفعل غير المضيف في وراثة صفة وزن المحصول الكلي ، متوسط وزن الثمرة ، كثافة الشبكة ، سمك اللحم ، والسكريات الصلبة الذائبة في الموسمين. أظهرت النسبة المحسوبة بين متوسط مربعات الانحرافات للقدرتين العامة والخاصة على الائتلاف أن الفعل المضيف وغير المضيف للجينات له نفس الأهمية في وراثة صفة ميعاد تفتح أول زهرة مؤنثة في العروة الخريفي.

اختلفت الأباء في تأثيرات القدرة العامة على الائتلاف فمثلا Trooper الفدرة العامة على الائتلاف فمثلا Ananas El-، Trooper على الأباء في المحصول ومكوناته وكثافة الشبكة وسمك اللحم في الموسمين بينما كانت أفضل الأباء في صفة ميعاد تفتح أول زهرة مؤنثة هي PI175673 في صنفة ميعاد تفتح أول زهرة مؤنثة هي Ananas El-Dokki كذلك أوضحت حسابات تأثيرات القدرة الخاصة على الائتلاف للهجن المختلفة أن أفضل الهجن المهجن المحتلفة أن أفضل الهجن عيعاد تفتح أول زهرة حيث أعطت قيم معنوية سالبة وبالتالي هي أفضل الهجن في النبكير في الموسمين .

من هذه الدراسة اتضح ان الهجن Trooper × Ananas El-, PI169374 × Trooper نطيع المناسخة ويمكن المناسخة على هذه الهجن قبل تسجيلها كهجن تجارية توزع على المزراعين.

عند تقييم الأباء والهجن للبياض الدقيقي وجد ان الأباء PI175673 ,PI169374 والهجن PI175673 ×Kahera6 ,PI169374 × Kahera6 ,PI169374 × PI175673 أظهرت مقاومة.

الكلمات الدالة: الشمام، قوة الهجين، القدرة العامة والخاصة على التالف، تحليل الداى اليل

CONTENTS

	rage
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Heterosis	3
2. Combining ability	20
3. Powdery mildew bioassay	32
MATERIALS AND METHODS	37
1. First experiment	38
a. Experimental design	38
b. Character measured	38
1. Vegetative growth	38
2. Flowering traits	39
3. Yield components	39
4. Fruit quality	40
c. Statistical analysis	41
1. Analysis of variance	41
2. Heterosis	41
3. Ptoance ratio	42
4. Half diallel cross	43
2. Second experiment	43
a. Powdery mildew bioassay	43
b. Disease assessments	44
RESULTS AND DISCUSSION	45
1. Analysis of variance	45
a. Vegetative growth	45
b. Flowering traits	46
c. Yield components	46
d. Fruit quality	48
2. The mean performance of genotypes variance	49
a. Vegetative growth	49
b. Flowering traits	52
c. Yield components	53
d Fruit quality	56

3.		r r r r r r r r r r r r r r r r r r r
	co	mpared with commercial hybrid
	a.	Vegetative growth
	b.	Flowering traits
	c.	Yield components
	d.	Fruit quality
4.	He	eterosis
	a.	Vegetative growth
	b.	Flowering traits
	c.	Yield components
	d.	Fruit quality
5.	Co	ombining abilities
	a.	Vegetative and Flowering traits
	b.	Yield components
	c.	Fruit quality
6.	Ge	eneral combining ability for each parental
	a.	Vegetative and Flowering traits
	b.	Yield components
	c.	Fruit quality
7.	Sp	ecific combining ability effects
	a.	Vegetative and Flowering traits
	b.	Yield components
	c.	Fruit quality
8.	Ev	aluation to resistance to powdery mildew
		MARY
		ERENCES
		BIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	The fruit characteristics of all used genotypes	37
2.	The form of the analysis of variance and expectations of mean squares	41
3.	The form of analysis of variance of the half-diallel crosses mating design.	43
4.	Analysis of variance and mean squares for vegetative growth and flowering data during fall and summer season 2008 and 2009.	46
5.	Analysis of variance and mean squares for yield and its components during fall and summer season 2008 and 2009	47
6.	Analysis of variance and mean squares for some fruit characters during fall and summer season 2008 and 2009.	49
7.	Analysis of variance and mean squares for some fruit characters during fall and summer season 2008 and 2009.	49
8.	Mean performance of five sweet melon parental and 10 F ₁ for vegetative and flowering characters during fall season of 2008 and summer season of 2009	51
9.	Mean performance of five sweet melon parental and 10 F ₁ for Total yield c component. during fall season of 2008 and summer season of 2009	54
10.	Mean performance of five sweet melon parental and 10 F_1 for fruit characters during fall season of 2008 and summer season of 2009	57
11.	Mean performance of five sweet melon parental and 10	58

	F ₁ for fruit characters during fall season of 2008 and summer season of 2009	
12.	Mean performance of 10 F ₁ hybrid and control for vegetative and flowering characters during fall season of 2008 and summer season of 2009	60
13.	Mean performance of 10 F ₁ hybrid and control for Total yield component during fall season of 2008 and summer season of 2009.	63
14.	Mean performance 10 F ₁ hybrid and control for fruit characters during fall season of 2008 and summer season of 2009	66
15.	Mean performance 10 F ₁ hybrid and control for fruit characters during fall season of 2008 and summer season of 2009.	69
16.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for plant length and Number of branches in two seasons.	71
17.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for Leaf area and Number of days to anthesis in two seasons	75
18.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for early weight and number of fruit in two seasons.	78
19.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for total yield /plant number and weight in two seasons.	81
20.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence	84

	ratio for Average fruit weight (kg) and Fruit length in two seasons.	
21.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for Fruit diameter and Shape index in two seasons.	87
22.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for net density and Flesh thickness in two seasons	90
23.	Average degree of heterosis (ADH) % based on mid- parent (MP) and high parent (HP), as well as, potence ratio for Total soluble solids in two seasons	93
24.	Analysis of variance of combining ability and the mean squares for vegetative and flowering traits in two seasons.	95
25.	Analysis of variance of combining abilities and the mean squares for yield components in two seasons	96
26.	Analysis of variance of combining ability and the mean squares for Fruit traits in two seasons.	97
27.	Analysis of variance of combining abilities and the mean squares for Fruit traits in two seasons.	97
28.	Estimates of general combining ability effects (gi^) of five sweet melon parents for vegetative growth and flowering characters	99
29.	Etimates of general combining ability effects (gi^) of five sweet melon parents for yield component	99
30.	Estimates of general combining ability effects (gi^) of five sweet melon parents for fruit traits	102
31.	Estimates of general combining ability effects (gi^) of five sweet melon parents for fruit traits.	102
32.	Estimates of specific combining ability effects (sij^) of	104