GENETIC STUDIES AND PROPAGATION OF DATE PALM SEEDLINGS USING TISSUE CULTURE

By

AHMED GAMAL EL DIN MOHIE EL DIN HASSAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2010

APPROVAL SHEET

GENETIC STUDIES AND PROPAGATION OF DATE PALM SEEDLINGS USING TISSUE CULTURE

M.Sc. Thesis In

Agric. Sci. (Genetics)

By

AHMED GAMAL EL DIN MOHIE EL DIN HASSAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2004

Approval Committee

Dr. MOHAMED SAFWAT A. MOHAMED	
Professor of Genetics, Head of Microbial Genetics Dept., NRC, Giza	
Dr. AHMED MOHAMED ELSHARKAWY	
Emeritus Professor of Genetics, Fac. Agric., Cairo University	
Dr. AHMED NAGIB SHARAF	
Professor of Genetics, Fac. Agric., Cairo University	
Dr. REDA ELWANY A. MOGHAIEB	
Assistant Professor of Genetics Fac Agric Cairo University	

Date: 28 /10/ 2010

SUPERVISION SHEET

GENETIC STUDIES AND PROPAGATION OF DATE PALM SEEDLINGS USING TISSUE CULTURE

M.Sc. Thesis
In
Agric. Sci. (Genetics)

By

AHMED GAMAL EL DIN MOHIE EL DIN HASSAN

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2004

SUPERVISION COMMITTEE

Dr. AHMED NAGIB SHARAF Professor of Genetics, Fac. Agric., Cairo University

Dr. REDA ELWANY A. MOGHAIEB
Assistant Professor of Genetics, Fac. Agric., Cairo University

Dr. MOHAMED REDA A. AHMED
Researcher, Plant Genetic Resources, Desert Research Center, Cairo

Name of Candidate: Ahmed Gamal ElDin Mohie ElDin Hassan Degree: M.Sc. Title Name of Thesis: Genetic Studies and Propagation of Date Palm Seedlings

Using Tissue Culture

Supervisors: Dr. Ahmed Nagib Sharaf

Dr. Reda Elwany A. Moghaieb Dr. Mohamed Reda A. Ahmed

Department: Genetics Approval: 28/10/ Y. V.

ABSTRACT

Genetic diversity and the degree of relatedness were measured among six date palm varieties (*Phoenix dactylifera L.*) by means of protein banding pattern, isozyme, RAPD, and inter-simple sequence repeat (ISSR) analyses. The levels of polymorphism among the six genotypes were 83.3, 62.5, 60, and 50% as revealed by protein, esterase, GOT and peroxidase banding patterns, respectively. While, 60.2% and 73% genetic polymorphism percentage were obtained by RAPD and ISSR, respectively. Based on the data obtained, it was possible to discriminate among the different genotypes used and to identify the unknown genotype collected from Matroh Governorate. The highest number of RAPD specific markers was scored for the unknown genotype (5 markers) while the cultivar Karamah and Frehi scored three and two markers, respectively. Four ISSR markers characterized the cultivar Karamah while Frehi and Oshkingbil cultivars were characterized by only one marker each. The cluster analysis indicates that the unknown cultivar was closely related to the cultivar Frehi and Oshkingbil. The potential uses of the biochemical and molecular markers in sex identification of in vivo grown date palm were investigated. Two male-specific protein bands with the molecular weights of 72 and 47 kDa and another two female-specific bands with the molecular weights of 135 and 55kDa were detected. Female-specific peroxidase band (RF of 0.4) and male-specific esterase band (RF of 0.5) were also detected. Random amplified polymorphic DNA (RAPD) technique was used to compare genetic material from male and female date palm trees. The data indicate that 13 and 5 RAPD markers were found to be female-and male-specific, respectively and can be applied for breeding programs aiming to improve date palms. An efficient protocol for date palm regeneration from petiole explants was developed. The genetic similarity among the regenerated plantlets was determined by analyzing several regenerated plantlets and their mother plant by RAPD analysis which indicates 68% similarity among them.

Key words: Date palm, ISSR, RAPD, sex-specific markers.

دراسات وراثية وإكثار لبعض الأصول البذرية لنخيل البلح باستخدام تقنية زراعة الأنسجة

رسالة ماجستير في العلوم الزراعية (وراثة)

مقدمة من

أحمد جمال الدين محي الدين حسن بكالوريوس في العلوم الزراعية (تكنولوجيا حيوية) كلية الزراعة ـ جامعة القاهرة، ٢٠٠٤

لجنة الإشراف

الدكتور/ أحمد نجيب السيد شرف أستاذ الوراثة - كلية الزراعة - جامعة القاهرة

الدكتور/ رضا علواني عبد الحليم مغيب أستاذ الوراثة المساعد - كلية الزراعة - جامعة القاهرة

الدكتور/ محمد رضا عبد المجيد أحمد باحث قسم الاصول الوراثية - مركز بحوث الصحراء

دراسات وراثية وإكثار لبعض الأصول البذرية لنخيل البلح باستخدام تقنية زراعة الأنسجة

رسالة ماجستير في العلوم الزراعية (وراثة)

مقدمة من

أحمد جمال الدين محي الدين حسن بكالوريوس في العلوم الزراعية (تكنولوجيا حيوية) كلية الزراعة ـ جامعة القاهرة ، ٢٠٠٤

لجنة الحكم

دكتور/ محمد صفوت عبد السلام محمد أستاذ الوراثة ــ رنيس قسم الوراثة الميكروبية ــ المركز القومي للبحوث
دكتور/ أحمد محمد الشرقاوي أستاذ الوراثة غير المتفرغ ـ كلية الزراعة ـ جامعة القاهرة
دكتور/ أحمد نجيب السيد شرف أستاذ الوراثة ـ كلية الزراعة ـ جامعة القاهرة
دكتور/ رضا علوانى عبد الحليم مغيب أستاذ المسائة المساحد كالبة النساعة محاممة القاهدة

التاريخ: ۲۸/ ۱۰/۱۰/۱۰م

دراسات وراثية وإكثار لبعض الأصول البذرية لنخيل البلح باستخدام تقنية زراعة الأنسجة

رسالة مقدمة من

أحمد جمال الدين محي الدين حسن بكالوريوس في العلوم الزراعية (تكنولوجيا حيوية) كلية الزراعة _ جامعة القاهرة ،٢٠٠٤

للحصول على درجة

الماجستير

في

العلوم الزراعية (وراثة)

قسم الوراثة كلية الزراعة جامعة القاهرة مصسر

۲.1.

اسم الطالب: أحمد جمال الدين محي الدين حسن عنوان الرسالة: در اسات وراثية وإكثار لبعض الأصول البذرية لنخيل البلح باستخدام تقنية زراعة الأنسجة

المشرفون: دكتور: أحمد نجيب السيد شرف

دكتور: رضا علواني عبد الحليم مغيب

دكتور: محمد رضا عبد المجيد أحمد

تاريخ منح الدرجة: ٢٠١٠/١٠/٢٨

قسم: الوراثة

المستخلص العربي

تم دراسة التباين الوراثي ودرجة القرابة بين ستة من أصناف نخيل البلح على مستوى تحليل كل من البروتينات، المشابهات الإنزيمية، والRAPD وكذلك ISSR . أوضحت النتائج أن نسبة التباين الوراثي المتحصل عليها وصلت الى ٨٣.٣، ٥٠، ٢٠ و ٥٠% على مستوى كلا من البروتين ، الاستيريز ، GOT و البيروكسيديزعلي التوالي بينما كانت النسبة ٢.١٠ و٧٣% على مستوى كل من RAPD و ISSR على التوالي. طبقا للَّنتائج المتحصل عليها يكونُ من السهلُّ التمييز بين مختلف التراكيب الوراثية المستخدمة وكذلك تعريف الصنف مجهول الهوية وراثياً. ووصلت عدد الواسمات المحددة للصنف المجهول الى خمسة واسمات (RAPD) بينما كانت هناك ثلاثة واسمات محددة للصنف كرامة و اثنين أخرين محددة للصنف فريحي . واتضح من نتائج الISSR ان ٤ واسمات تحدد الصنف كرامة وواسم واحد يحدد كل من الصنف فريحي والصنف اوشكينحبيل . و أوضحت شجرة القرابة ان الصنف الجهول التركيب الوراثي شديد القرابة للصنفين فريحي و اوشكينجبيل. وتم استخدام كل من الواسمات البيوكيميائية والجزيئية في تحديد الجنس في نخيل البلح وأوضحت النتائج أن هناك اثنين من شرائط البروتين عند الوزن الجزيئي ٧٢،٤٧ كيلو دالتون مميزة للذكور واثنان أخران عند الوزن الجزيئي ١٣٥،٥٥ كيلو دالتون مميزة للإناث. وتم تحديد شريط بيروكسيديز مميز للإناث عند الRF المساوية ل£. • واخر خاص بالاستيريز عند الRF المساوية ٥.٠ مميز للذكور. وأوضحت نتائج الRAPD أن ١٣ واسم مميز للإناث بينما خمسة واسمات فقط مميزة للذكور ويمكن استخدام هذه الواسمات في برامج التربية لتحسين صفات البلح. وبهدف المحافظة على الصنف مجهول الهوية الوراثية تم إكثاره معملياً باستخدام كل من القمم النامية وكذلك الأجزاء القاعدية لأوراق البادرات الصغيرة وتم التوصل الى طريقة ذات كفاءة عالية لاعادة التكشف في نباتات نخيل البلح. وكذلك تم تحديد درجة التماثل الوراثي بين النباتات الناتجة من زراعة الآنسجة مقارنة بالنبات الأم عن طريق تحليل هذه النباتات بواسطة الRAPD الذي أوضح وجود درجة تشابه تصل الى ٦٨%.

الكلمات الدالة: نخيل البلح - الواسمات الوراثية الجزيئية - تحديد الجنس – إعادة التكشف.

DEDICATION

I dedicate this work to whom my heart felt thanks: to my great father who I wish to be a good man like him, mother, sister, Precious wife and my sons Mohamed and Yassin for all the support and encouragement they continually offered along the period of my post-graduate studies. And to every one want that world to be a better place to live.

ACKNOWLEDGEMENT

At first, I would like to thank ALLAH that allowing me to achieve this work, without his bless any great effort is invaluable.

I wish to express my deep gratitude to Dr. Ahmed N. Sharaf, Professor of Genetics, Faculty of Agriculture, Cairo University, for supervision, continued assistance, guidance, great interest, encouragement, following the progress of the work with great interest and continuous criticism through the course of study. I would like also to express my deep appreciations and utmost gratitude to Dr. Reda E.A. Moghaeib, Assistant Professor of Genetics, Faculty of Agriculture, Cairo University for his supervision of this investigation, encouragement, unlimited help, moral support and valuable guidance throughout the achievement of this study.

My special and deep thanks to Dr. Mohamed Reda A. Ahmed Researcher of Plant Genetic Resources — Desert Research Center for his valuable help, and encouragement during this work. Sincere thanks are due to Dr. Ahmed M. EL-Sharkawy Emeritus Professor of Genetics, Faculty of Agriculture, Cairo University, for his generous help. I would like also to thank Dr. Sawsan Samy Emeritus Professor of Genetics, Faculty of Agriculture, Cairo University, for guidance, great interest. Many thanks are due to all the members of the Desert Research Center and the Genetic Engineering Research Center, Faculty of Agriculture, Cairo University and all the members of the Department of Genetics, Cairo University for their continuous help.

CONTENTS

NTR	ODUCTION
REVI	EW OF LITERATURE
1.	Cultivar identification
	a. Date Palm identification using biochemical markers
	b. Cultivar identification using molecular markers
2.	a. Sex differentiation in date palm based on biochemical markers.
	b. Sex differentiation in date palm based on molecular markers
RESU	ERIALS AND METHODSULTS AND DISCUSSION
	a. Biochemical level.
	b. Molecular level
2.	. Sex identification in date palm
3.	. In vitro propagation of date palm
4.	Genetic stability between mother plant and regenerated date palm plantlets
	ERENCES
	BIC SUMMARY

LIST OF FIGURES

No.	Title	Page
1	The growth rate and the yielding ability of the Unknown genotype grown at Wadi Abu Lahw,	0
2	Matroh Governorate. Separation and open field preparation of date palm offshoots from Wadi Abu Lahw and Siwa Oasis, Matroh Governorate Egypt	8 43
3	Matroh Governorate, Egypt	54 54
4	Total Protein banding pattern of six date palm cultivars. M: wide range protein marker, 1-6: are Unknown, Frehi, Oshkingbil, Azzawy, Siwy and	<i>c</i> 1
5	Esterase banding pattern of six date palm cultivars. 1-6: are Unknown, Frehi, Oshkingbil, Azzawy, Siwy	61
6	and Karamah cultivars, respectively	63
7	and Karamah cultivars, respectively GOT banding pattern of six date palm cultivars. 1-6: are Unknown, Frehi, Oshkingbil, Azzawy, Siwy and	64
8	Karamah cultivars, respectively	65
9	Azzawy, Siwy and Karamah cultivars, respectively ISSR banding pattern of the six date palm cultivars used. M: 100bp DNA ladder, 1-6: are the Unknown, Frehi, Oshkingbil, Azzawy, Siwy and Karamah cultivars respectively	6970
10	Clustering of six date palm genotypes based on pooled RAPD and ISSR markers	72
11	Protein banding pattern between male and female date palm, M: Protein marker, F female date palm and M male	73
12	The differences in esterase banding patterns between male and female date palm M: male F: female	74

13	Peroxidase banding patterns in male and female date	
	palm. M: male and F: female	7
14	GOT banding patterns in male and female date palm.	
	M: male, F: female plants	7
15	RAPD banding pattern shows the genetic differences	
	between male and female date palm trees from	
	Unknown cultivar collected from Matroh	7
1.0	Governorate. F: female and M: male tree	7
16	Callus induction on shoot tip as starting explants. A-G	
	show a swilling of explants, while H: is a	
	embryogenic callus	8
17	Embryogenesis processes of date palm resulted from	
	transferring the embryogenic calli into shoot inducing	
	medium. The arrows indicate the pro embryo	
	production	8
18	Different developmental stages of date palm somatic	
	embryos A: embryonic calli, b: somatic embryos, C-E	
	embryo germination and F: whale plant	
	regeneration	8
19	RAPD profile of regenerated date palm Plantlets in	
	comparison to their Unknown mother plant. M: 1kp	
	DNA marker, Lane 1 is mother plant. Lanes 2-7	
	regenerated date palm plantlets	8

LIST OF TABLES

No.	Title	Page
1.	The top ten dates producer world wide (2007)	3
2.	Cultivar name, sampling place and fruit characteristics of	
	six date palm genotypes	43
3.	Names and sequences of the ten RAPD primers used	50
4. 5.	Names and sequences of the ISSR primers used Different media composition used for callus and shoot	51
6.	Different media composition used to callus induction and	56
7.	Names and sequences of RAPD primers used in genetic stability among regenerated date palm plantlets in	58
8.	Comparison with their mother plant Number of protein bands and their molecular size among	59
0.	the six date palm cultivars	62
9.	Number of esterase bands and their RF values of the six	
4.0	date palm cultivars	63
10	Number of peroxidase bands and their RF values of the six	64
11	Number of GOT bands and their R.F among six date palm cultivars	65
12	Genetic Polymorphism among the six date palm genotypes as revealed by RAPD analysis	68
13	ISSR primer names, total and polymorphic bands	
	generated among the six date palm genotypes used	70
14	The genotype-specific RAPD and ISSR markers obtained from the six date palm cultivars	71
15	Female and male specific markers as revealed by RAPD analysis	71
16	Comparison between the efficiency of four different media on callus inducing from petiole explants isolated from	
	young seedlings of the Unknown genotype	85
17	Genetic polymorphism among regenerated date palm	
	Plantlets, and their mother plant	86

INTRODUCTION

The botanical name of the date palm, *Phoenix dactylifera* L., is presumably derived from a Phoenician name "phoenix" which means date palm, and "dactylifera" derived from a Greek word "daktulos" meaning a finger, illustrating the fruit's form (Linné, 1734). Another source refers this botanical name to the legendary Egyptian bird, "Phoenix" which lived to be 500 years old, and cast itself into a fire from which it rose with renewed growth (Pliny, 1489 and Van Zyl; 1983). This resemblance to the date palm, which can also re-grow after fire damage, makes the bird and the date palm share this name, while "dactylifera" originates from the Hebrew word "dachel" which describes the fruit's shape (Popenoe, 1938).

Belonging to the angiosperms-monocotyledones, *Palmaceae* a family of about 200 genera and 1,500 species (Dowson, 1982). Phoenix (*Coryphoideae phoeniceae*) is one of the genera which contains a dozen species, all native to the tropical or subtropical regions of Africa or Southern Asia, including *Phoenix dactylifera* L. (Munier, 1973). According to Dransfield and Uhl, (1986) date palm is classified as follows:

Group: Spadiciflora

Order: Palmea
Family: Palmaceae
Sub-family: Coryphyoideae
Tribe: Phoeniceae
Genus: Phoenix
Species: Dactylifera L.