A Three-Dimensional Finite Element Stress Analysis Studying the Influence of Bar Position on Implant-Retained Mandibular Overdenture

Thesis Submitted to
The Faculty of Oral and Dental Medicine
Cairo University
In Partial Fulfillment for the Requirements of Master
Degree in Removable Prosthodontics

By

Ayman Hany Mahmoud Amin

B.D.S Ain Shams University

Faculty of Oral and Dental Medicine Cairo University 2008

Supervisors

Prof. Dr. Amal Rekaby Taha

Professor of Prosthodontics
Faculty of Oral and Dental Medicine
Cairo University

Ass. Prof. Dr. Amal Mahmoud Ibrahim

Assistant Professor of Prosthodontics Faculty of Oral and Dental Medicine Cairo University

Dr. Sahar Ali Fawzy

Lecturer of Systems and Biomedical Engineering Faculty of Engineering Cairo University

بسم الله الرحمن الرحيم

تأثير مكان القضيب علي الأحمال المنقولة إلي العظم المحيط بالغرسات في حالات الأطقم المحمولة علي القضبان في الفك السفلي عن طريق تحليل المحدودة ثلاثي الأبعاد

رسالة مقدمة إلى كلية طب الفم والأسنان – جامعة القاهرة

تمهيداً للحصول علي درجة الماجستير في فرع الأستعاضة الصناعية

من *الطبیب / أیمن هاني محمود أمین*

بكالوريوس طب وجراحة الفم والأسنان جامعة عين شمس

> كلية طب الفم والأسنان جامعة القاهرة 2008

تحت إشراف

أ.د/ آمال ركابى طه استاذ بقسم الاستعاضه الصناعيه كليه طب الفم و الاسنان جامعه القاهره

د/ أمل محمود ابراهيم استاذ مساعد بقسم الاستعاضه الصناعيه كليه طب الفم و الاسنان جامعه القاهره

د/ سحر على فوزى مدرس بقسم الهندسه الحيويه الطبيه و المنظومات كليه الهندسه جامعه القاهره

ACKNOWLEDGMENT

First I would like to thank "**God**" for giving me the power and support to finish this work.

I would like to express my honor and respect to **Dr. Amal Rekaby Taha,** Professor of Prosthodontics, Cairo University for her great support and encouragement which helped me to finish this work.

I am really thankful to **Dr. Amal Mahmoud Ibrahim,** Assistant Professor of Prosthodontics, Cairo University for her help, patience and guidance in order to make this work possible.

Moreover I would like to express my deepest gratitude to **Dr. Sahar Ali Fawzy,** Lecturer of Systems and Biomedical Engineering, Cairo University, for her great help in teaching me new skills, valuable time and encouragement.

I would like also to thank **Dr. Ahmed Elbialy,** Assistant Professor of Systems and Biomedical Engineering and **Dr. Ahmed Hisham,** Assistant Professor of Systems and Biomedical Engineering, Cairo University for their help and suggestions.

Last but not least I would like to thank my dear parents and my aunt for their unlimited help and support which gave me the strength to finish this work.

CONTENTS

	Page
TITLE PAGE	
SUPERVISORS	
ACKNOWLEDGMENT	i
CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
REFREEING DECISION	
INTRODUCTION	1
	3
REVIEW OF LITERATURE	
I) Implant Retained Overdentures	3
1) Advantages of implant-retained	
mandibular overdentures	
2) Disadvantages of implant-retained	
mandibular overdentures	
II) Mandibular Implant Postheses	
1) Removable implant overdentures	
A)Mandibular tissue supported implant	
overdentures	
B) Mandibular combined implant tissue supported overdentures	
i) Two-implant supported	7
overdentures	•
ii) Three-implant supported	9
overdentures	

C) Mandibular implant supported	10	
overdentures		
i) Treatment options for mandibular	11	
implant supported prostheses		
2) Mandibular implant fixed prostheses		
i) Treatment options for fixed		
prostheses	14	
3) Removable overdentures versus		
Fixed restorations	14	
III) Overdenture Attachments	15	
Classification of precision attachments		
1) Intracoronal attachments	17	
2) Extracoronal attachments	17	
3) Bar attachments		
4) Stud attachments		
5) Auxillary attachments		
Bar attachments		
Bar joints	18	
Single sleeve bar jointMultiple sleeve bar joints	19	
Bar units	19	
Types of bar attachments	19	
A. Ackermann bar	20	
B. Dolder bar	20	
C. Hader bar	20	
D. Baker Clip	20 21	
E. C.M. bar	22	
F. Ceka bar	22	
G. M.P. Channels	22	
H. OT Multiuse bar	23	
I. Customized bars	23 24	
	24	

According to the manner of connection to the implants bars may be classified	25
into	25
A. Screw retained	26
B. Cement retained	27
C. Combined screw and cement retained	
 Splinted versus non splinted implants 	27
IV) Types of stress analysis	30
1. Strain gauge	30
2. Photoelasticity	32
3. Finite element analysis	33
AIM OF THE STUDY	
MATERIAL C AND METUOR	39
MATERIALS AND METHOD	
I. Three dimensional drawing of the	
model components	
1. The mandible	40
2. The implant	43
3. Bone cylinders	44
4. Retaining screw	
<u> </u>	45 46
5. Transmucosal element	
6. Castable cylinder	46
7. Prosthetic screw	47
8. The bar	48
9. The overdenture	48
II. Steps of assembling the	49
components to form the three	

	models	
III.	Defining the material properties for	53
	each component	
IV.	Defining contacts and gaps between	54
	components	
V.	Defining loads and restraints	55
	1. Loads	
	2. Restraints	
VI.	Meshing of the model	57
VII.	Running the analysis	58
VIII.	Collection of the results	58
RESULTS		59
		60
1.	Unilateral vertical load	62
	1. Model 1	69
	2. Model 2	76
	3. Model 3	83
II.	Unilateral oblique load 1. Model 1	84
	2. Model 2	92
	3. Model 3	
	J. MOUGI J	98
		40=
DIS	CUSSION	105
I.	Discussion of the methodlogy	105
_ -	1. Model construction	106
	2. Material properties	108
	3. Loads	109

A. Load magnitude	109
B. Load direction	109
4. Collection of the results	
A. Von Mises stress	110
B. Vertical stress	110
II. Discussion of the results	111
1. Patterns of stress distribution	111
2. Effect of splinting	114
A. Unilateral vertical load	114
B. Unilateral oblique load	116
SUMMARY AND CONCLUSIONS	
	121
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Tables		Page
1	The materials used for every component and its properties	54
2	Von Mises stress induced in M1 under unilateral vertical load	61
3	Vertical stress induced in M1 under unilateral vertical load	61
4	Von Mises stress induced in M2 under unilateral vertical load	68
5	Vertical stress induced in M2 under unilateral vertical load	68
6	Von Mises stress induced in M3 under unilateral vertical load	75
7	Vertical stress induced in M3 under unilateral vertical load	75
8	Von Mises stress induced in M1 under unilateral oblique load	83
9	Vertical stress induced in M1 under unilateral oblique load	83
10	Von Mises stress induced in M2 under unilateral oblique load	91
11	Vertical stress induced in M2 under unilateral oblique load	91
12	Von Mises stress induced in M3 under unilateral oblique load	97
13	Vertical stress induced in M3 under unilateral oblique load	97

LIST OF FIGURES

Figures		Page
1	Basic sketch for the mandible with the proposed implants	41
	position	
2	2D sketches for the entire mandible	42
3	The final mandible design	43
4	a. The final implant design	44
	b. The implant longitudinal cross section	44
5	Longitudinal cross section of the bone cylinder with the	44
	engraved implant shape	
6	a. The bone cylinder	45
_	b. The 4 coronal quarters	45
7	The retaining screw	45
8	a. The transmucosal element	46
	b. The dome shaped transmucosal element	46
9	a. Castable cylinder	47
	b. Castable cylinder cross section with the engraved shape	47
40	of the transmucosal element and the prosthetic screw	47
10 11	Prosthetic screw	47
12	The U-shaped bar The overdenture	48
13	Assembled model	49 49
14		50
14	a. Assembling implant & bone cylinderb. Assembled implant & bone cylinder	50 50
15	a. Assembling the transmucosal element & retaining screw	50
13	to the implant	30
	b. Assembling the dome-shaped transmucosal element to the	50
	implant	
16	a. Assembled transmucosal element to the implant	51
	b. Assembled dome-shaped transmucosal element to the	51
	implant	
17	a. Assembling the castable cylinder & the prosthetic screw	51
	to the implant	
	b. Assembled castable cylinder, prosthetic screw and	51
	implant	
18	Model 1 (M1)	52
19	Model 2 (M2)	52
20	Model 3 (M3)	52
21	Assembling the denture to the model	53
22	The final model assembly	53
23	Unilateral vertical load	55
24	Unilateral oblique load	56
25	Meshing of the model	57
26	Von Mises stress distribution. (M1)	64
27	Von Mises stress distribution at the working side. (M1)	64
28	Point of connection between the left bar & left molar castable	64
00	cylinder. (M1)	0.4
29	Point of connection between the left bar & left canine castable	64

	cylinder. (M1)	
30	Highest stress values detected between the left bar & left	65
	castable cylinders. (M1)	
31	Von Mises stress distribution in the mandible. (M1)	65
32	Vertical stress distribution. (M1)	66
33	Point of connection of the left bar to the castable cylinders.	66
	(M1)	
34	Vertical stress distribution on the left canine castable cylinder.	66
	(M1)	
35	The transmucosal element of the left molar implant. (M1)	67
36	The transmucosal element of the left canine implant. (M1)	67
37	Distribution of vertical stress in the mandible. (M1)	67
38	Von Mises stress distribution. (M2)	70
39	Point of connection between the left bar and left castable	71
	cylinders. (M2)	_,
40	Point of connection between the left bar and left castable	71
4.4	cylinders. (M2) (Top view)	-4
41	Von Mises stress distribution in the mandible. (M2)	71
42	Vertical stress distribution. (M2)	72
43	The transmucosal elements of the left molar and left canine	73 74
44 45	Vertical stress distribution in the mandible. (M2)	74 78
45 46	Von Mises stress distribution. (M3) Stress distribution at the left molar transmucosal element	78
47	Stress distribution at the anterior bar & left canine	78
7,	transmucosal element	70
48	Von Mises stress distribution in the mandible. (M3)	79
49	Vertical stress distribution. (M3)	80
50	Left molar transmucosal element. (M3)	80
51	Left canine transmucosal element. (M3)	81
52	Vertical stress distribution in the mandible. (M3)	81
53	The stresses induced in the bone quarters surrounding the left	82
	molar implant in the three models under unilateral vertical	
	load	
54	The stresses induced in the bone quarters surrounding the left	82
	canine implant in the three models under unilateral vertical	
	load.	
55	Von Mises stress distribution. (M1)	86
56	Stress distribution in the transmucosal element of left molar	87
	implant. (M1)	
57	Areas of high stresses in the transmucosal element of left	87
5 0	molar implant (M1)	07
58 50	Von Mises stress distribution in the mandible. (M1)	87
59 60	Vertical stress distribution. (M1)	88
60	Transmucosal element of posterior left molar implant. (Buccal	89
61	view) (M1) Transmussed element of posterior left moler implent (Linguel	89
01	Transmucosal element of posterior left molar implant (Lingual view) (M1)	09
62	Vertical stress distribution in the mandible. (M1)	90
63	Von Mises stress distribution. (M2)	92
64	Transmucosal element of left molar implant. (M2)	93
U .		

65	Transmucosal element of left canine implant. (M2)	93
66	Von Mises stress distribution in the mandible. (M2)	93
67	Vertical stress distribution. (M2)	94
68	Transmucosal element of left molar implant (Buccal view)	95
	(M2)	
69	Transmucosal element of left molar implant (Lingual view)	95
	(M2)	
70	Transmucosal element of left canine implant (lingual view)	95
	(M2)	
71	Vertical stress distribution in the mandible. (M2)	96
72	Von Mises stress distribution. (M3)	100
73	` /	100
	Transmucosal element of left molar implant. (M3)	
74 75	Transmucosal element of left canine implant. (M3)	100
75 70	Von Mises stress distribution in the mandible. (M3)	101
76	Areas of tension in anterior bar & transmucosal element of left	102
	and right canine implants. (M3)	
77	Areas of compression in anterior bar and transmucosal	102
	element of left and right canine. (M3)	
78	Transmucosal element of the left molar implant. (M3)	102
79	Vertical stress distribution in the mandible. (M3)	103
80	The stresses induced in the bone quarters surrounding the left	104
	molar implant in the three models under unilateral oblique	
	load	
81	The stresses induced in the bone quarters surrounding the left	105
	canine implant in the three models under unilateral oblique	
	load	
82	Scatter curves for the stresses induced in the mesial bone	111
	quarter of the left molar implant under unilateral vertical and	
	oblique loads in the three models.	
83	Scatter curves for the stresses induced in the distal bone	112
	quarter of the left molar implant under unilateral vertical and	
	oblique loads in the three models.	
84	Scatter curves for the stresses induced in the buccal bone	112
	quarter of the left molar implant under unilateral vertical and	
	oblique loads in the three models.	
85	Scatter curves for the stresses induced in the lingual bone	113
	quarter of the left molar implant under unilateral vertical and	
	oblique loads in the three models.	
86	Stress distribution in the overdenture. (M1)	117
87	Stress distribution in the overdenture. (M2)	117
88	Stress distribution in the overdenture. (M2) Stress distribution in the overdenture. (M3) (Buccal view)	117
89	Stress distribution in the overdenture. (M3) (Lingual view)	117
90	Displacement occurred in the overdenture. (M1)	118
90 91	Displacement occurred in the overdenture. (M1)	118
92		
92	Displacement occurred in the overdenture. (M3)	118