Diagnostic Value Of Exhaled Carbon Monoxide For Grading Of Childhood Asthma In Relation To The European Classification

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Ву

Mayada Ahmad Mahmoud Mazroaà M.B.; B.Ch.; (2004)

Under Supervision of

Prof. Dr./ Karima Ahmad Abd Elkhalek

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Dr./ Tharwat Ezzat Deraz

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

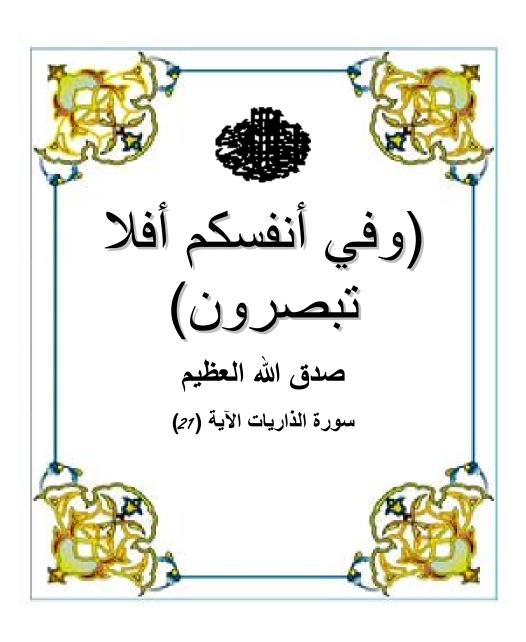
Dr./ Terez Boshra Kamel

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2011

القيمة التشخيصية لأول أكسيد الكربون الخارج من الزفير في تقييم الربو عند الأطفال طبقاً للتصنيف الأوروبي

رسالة توطئة للحصول علي درجة الماجيستير في طب الأطفال


مقدمة من الطبيبة ميادة أحمد محمود مزروع بكالوريوس الطب والجراحة كلية الطب – جامعة عين شمس، 2004

تحت إشراف أدر/ كريمة أحمد عبد الخالق أستاذ طب الأطفال كلية الطب - جامعة عين شمس

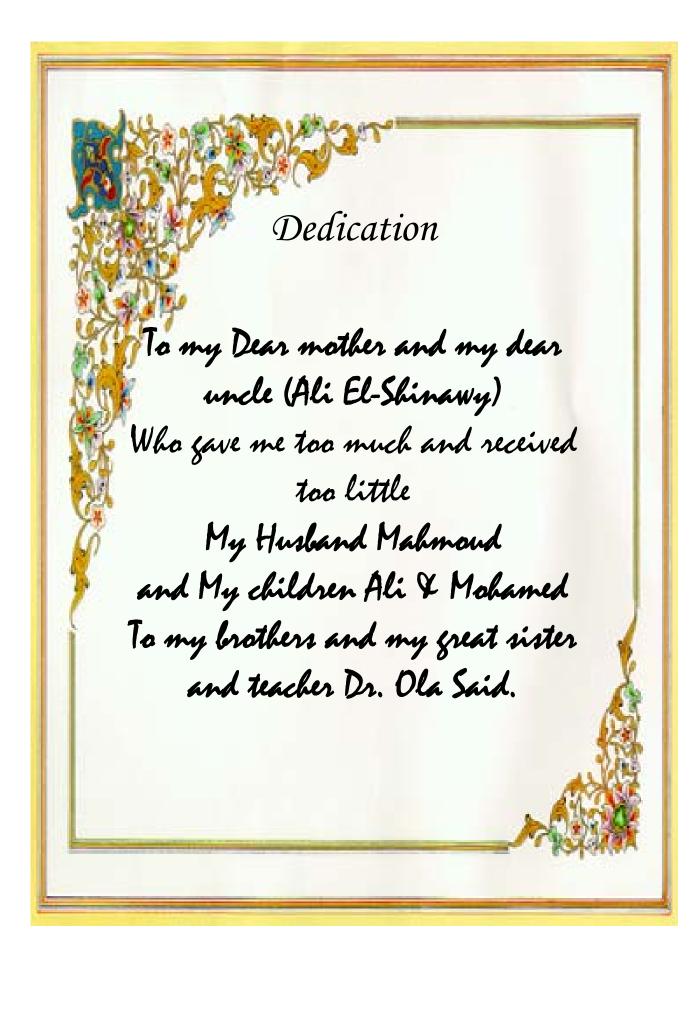
أ.د./ ثروت عــــــزت دراز أستاذ طب الأطفال كلية الطب - جامعة عين شمس

> د./تريز بشرى كامل مدرس طب الأطفال كلية الطب - جامعة عين شمس

> > كلية الطب جامعة عين شمس 2011

Acknowledgement

First and foremost thanks are to ALLAH, the compassionate and merciful, whose help is the main factor in accomplishing this work.


It is my pleasure to express my deepest thanks and gratitude to **Prof. Dr./ Karima Ahmad Abd Elkhalek**, Professor of Pediatrics, Ain Shams University for her great help and support, kind supervision and continuous encouragement. I am truly grateful for her.

I am truly indebted to **Prof. Dr. Tharwat Ezzat Deraz**, Professor of Pediatrics, Ain Shams University for his meticulous supervision, encouragement, unlimited assistance and guidance during this work.

I would like also to express my profound thanks and gratitude to **Dr. Terez Boshra Kamel**, Lecturer of Pediatrics, Ain Shams, University for her constructive guidance, remarkable effort, and scientific assistance and whatever have been said, is little to express my respect and thanks to her.

Last but not least, I would like to express my endless gratitude to my dear patients and their parents for their cooperation in accomplishing my thesis, wishing them a good health, and my colleagues for their support and help.

Mayada

<u>**List of Contents**</u>

Subject	Page
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
SUBJECTS AND METHODS	60
RESULTS	69
DISCUSSION	100
SUMMARY AND CONCLUSION	114
RECOMMENDATIONS	117
REFERENCES	118
ARABIC SUMMARY	

List of Tables

Table No.	Page
Table (1):	Triggers of asthma11
Table (2):	Clinical classification of asthma31
Table (3):	Differential diagnosis of bronchial asthma
Table (4):	Severity of asthma attack34
Table (5):	Respiratory Parameters in both obstructive and restrictive lung diseases
Table (6):	Medications currently available for childhood asthma
Table (7):	Use of inhaler devices according to age
Table (8):	Criteria of control of asthma61
Table (9):	Group A (non-ICS, n=50)70
Table (10):	Group B (ICS cont, n=22)71
Table (11):	Group C (ICS uncont, n=30)72
Table (12):	Grading of asthma among asthmatic patients

Table (13):	Criteria of control among asthmatic patients
Table (14):	Values of pulmonary function in asthmatic patients
Table (15):	Values of exhaled CO in the studied asthmatic patients and control group75
Table (16):	Comparisons between Group A, Group B, Group C as regards anthropometry75
Table (17):	Comparisons between Group A, Group B, Group C as regards pulmonary function
Table (18):	Comparison between cases and controls as regards CO
Table (19):	Comparison between Group (A) (non-ICS) and control group as regards CO level
Table (20):	Comparison between Group (A) non-ICS and Group (B) ICS controlled as regards CO level
Table (21):	Comparison between Group (A) non-ICS and Group (C) ICS uncontrolled as regards CO level

Table (22):	Comparison between Group (B) ICS-controlled and control Group as regards CO level
Table (23):	Comparison between Group (B) ICS Controlled and Group (C) ICS uncontrolled as regards CO level83
Table (24):	Comparison between Group (C) ICS- uncontrolled and control Group as regards CO level
Table (25):	Comparison between all ICS (Group B + Group C) and control as regards CO level
Table (26):	Comparisons between Group A, Group B and Group C as regards CO level86
Table (27):	Correlation between CO level & symptoms (criteria of control) in non-ICS cases (group A)
Table (28):	Correlation between CO level& pulmonary function in non-ICS group (group A)
Table (29):	Correlation between CO level & Dose of inhaled corticosteroid in ICS (controlled) group (group B)89

Table (30):	Correlation between CO level& symptoms (criteria of control) in ICS (controlled) cases (group B)
Table (31):	Correlation between CO level& pulmonary function in ICS (controlled) cases (group B)
Table (32):	Correlation between CO level& symptoms (criteria of control) in ICS (uncontrolled) group (group C)93
Table (33):	Correlation between CO level & pulmonary function in ICS (uncontrolled) cases (group C)94
Table (34):	Correlation between CO level & Dose of inhaled corticosteroid in ICS (uncontrolled) group (group C)97
Table (35):	Sensitivity, specificity and cutoff values of eCO between cases and control
Table (36):	Predictive value of eCO between cases and control

<u>List of Figures</u>

Figure No.	Page
Figure (1):	Cells and mediators of asthma26
Figure (2):	The histopathological picture of airway remodeling of normal and asthmatic patient
Figure (3):	Different inhalers used in pediatric asthma
Figure (4):	MRI Spirobank73
Figure (5):	CO analyzer (pico +)66
Figure (6):	Grading of asthma among asthmatic children
Figure (7):	Distribution of anthropometry among cases
Figure (8):	Comparison between cases &controls as regards CO level
Figure (9):	Comparison between Group (A) (non-ICS) and control group as regards CO level
Figure (10):	Comparison between Group (A) (non-ICS) and Group (B) as regards CO level

Figure (11):	Comparison between Group (A) (non-ICS) and Group (C) ICS-uncontrolled as regards CO level
Figure (12):	Comparison between Group (B) ICS-controlled and control Group as regards CO level
Figure (13):	Comparison between Group (B) ICS (controlled) and Group (C) ICS-uncotrolled as regards CO level
Figure (14):	Comparison between Group (C) ICS- uncontrolled and control Group as regards CO level
Figure (15):	Comparison between all ICS (Group B + Group C) and control as regards CO level
Figure (16):	Comparisons between Group A, Group B and Group C as regards CO level
Figure (17):	Correlation between CO level & Nocturnal symptoms in non-ICS cases (group A)
Figure (18):	Correlation between CO level & FEV1 ICS (controlled) cases (group B)

Figure (19):	Correlation between CO level & PEEF ICS (controlled) cases (group
	B)91
Figure (20):	Correlation between CO level & FVC ICS (controlled) cases (group B)92
Figure (21):	Correlation between CO level & FEV1 ICS (uncontrolled) cases (group C)
Figure (22):	Correlation between CO level & FEV1/FVC in ICS (uncontrolled) cases (group C)
Figure (23):	PEEF in ICS (uncontrolled) cases
Figure (24):	ROC curve of eCO for discrimination
	between cases and control98

Abbreviation

ADAM33	Adesintergrin and metalloproteinase 33
AUC	Area under the curve
BDP	Budesonide
BMI	Body mass index
CD	Cluster of differentiation type
CO	Carbon monoxide
CRP	C-reactive protein
DEP	Diesel Exhaust particles
DPP10	Dipeptidyl peptidase 10
eCO	Exhaled carbon monoxide
EIA	Exercise induced asthma
FEV1	Forced expiratory volume in first second
FVC	Forced vital capacity
GERD	Gastro-esophageal reflux disease
GPRA	G-protein related receptor for asthma
HT	Height
ICS	Inhaled corticosteroids
ICS-cont	Inhaled corticosteroid-controlled
ICS-uncont .	Inhaled corticosteroid-uncontrolled
ISAAC	International Study of Asthma and Allergies in Childhood
LAβAs	Long-acting 62 agonists
LTRA	Leukotriene receptor antagonist

MDI	.Metered dose inhaler
NAEPP	National Asthma Education and Prevention Program
NO	. Nitrous Oxide
O3	.Ozone
PEEF	.Peak end expiratory flow
PHF11	Plant homeodomain zinc finger protein 11
PKR	.Protein kinase receptors
PM	.Particulate matters
ppb	.Part per billion
ppm	part per million
RSV	.Respiratory syncytial virus
SD	.Standard deviation
SLIT	.Sublingual immunotherapy
SPINK5	.Serine protease inhipitor Kazal type 5
Th	.T-helper
TLR3	.Toll lik receptor protein 3
TNF	.Tumor necrosis factor
WHO	.World Health Organization
WT	.Weight