

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ELECTRONICS AND COMMUNICATIONS ENGINEERING DEPARTMENT

DESIGN AND ANALYSIS OF IP MULTIMEDIA SUBSYSTEM (IMS)

A Thesis

Submitted for Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Electrical Engineering

(Electronics and Communications Engineering)

Submitted by

Eng. Wagdy Anis Aziz

B.Sc. of Electrical Engineering Ain Shams University, 1996 M.Sc. of Electrical Engineering Ain Shams University, 2006

Supervised by

Prof. Dr. Salwa Hussein El-Ramly

Professor of Communication Engineering
Electronics and Communication Engineering Dept.
Faculty of Engineering
Ain Shams Univeristy

Prof. Dr. Magdy Mahmoud Ibrahim

Professor of Communication Engineering
Electronics and Communication Engineering Dept.
Faculty of Engineering
Ain Shams University

Dr. Mohsen Tantawy

Associate Professor, Network Department, National Telecommunication Institute (NTI), Cairo, Egypt

Cairo 2011

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING LECTRONICS AND COMMUNICATIONS ENG

ELECTRONICS AND COMMUNICATIONS ENGINEERING DEPARTMENT

Examiners Committee

Name Wagdy Anis Aziz **Thesis** Design and Analysis of IP Multimedia Subsystem IMS Ph.D. (Electronics and Communications Engineering) **Degree** Approved by: Name & Title Signature 1- Prof. Dr. David Al Dabass **Emeritus Professor of Intelligent Systems** Nottingham Trent University NG11 8NS, United Kingdom. 2- Prof. Dr. Samir Ibrahim Shahin Professor of Computer Engineering, Cairo University 3- Prof. Dr. Magdy Mahmoud Ibraheem **Professor of Communication Engineering** Faculty of Engineering, Ain Shams University

Cairo, 23 May 2011

4- Prof. Dr. Salwa Hussein El Ramly Professor of Communication Engineering

Faculty of Engineering, Ain Shams Univeristy

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering (Electronics and communication Engineering)

The work included in this thesis was carried out by the author in the Department of Electronics and Communication Engineering, Ain Shams University.

No Part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Name : Wagdy Anis Aziz

Signature

Date : / / 2011

C.V.

Name of Researcher : **Wagdy Anis Aziz**Date of Birth : 23 January 1973

Nationality : Egyptian

First University Degree : B.Sc. in Electronics and Communication

Engineering. Faculty of Engineering. Ain

Shams University.

Date of Degree : 1996

Second University Degree: M.Sc. in Electronics and Communication

Engineering. Faculty of Engineering. Ain

Shams University.

Date of Degree : 2006

جامعة عين شمس _ كلية الهندسة قسم هندسة الإلكترونيات والاتصالات الكهربية

تصميم وتحليل نظام IMS

رسالة مقدمة للحصول على درجة دكتوراة العلوم في الهندسة الكهربية (هندسة الإلكترونيات والاتصالات)

مقدمة من المهندس / وجدى أنيس عزيز

بكالوريوس الهندسة الكهربية (هندسة الإلكترونيات والاتصالات الكهربية) كلية الهندسة – جامعة عين شمس – ١٩٩٦ ماجيستير الهندسة الكهربية (هندسة الإلكترونيات والاتصالات الكهربية) كلية الهندسة – جامعة عين شمس – ٢٠٠٦

تحت اشراف

الأستاذ الدكتور / مجدى محمود ابراهيم استاذ بقسم هندسة الإلكترونيات والإتصالات كلية الهندسة _ جامعة عين شمس

الأستاذ الدكتور / سلوى حسين الرملى استاذ بقسم هندسة الإلكترونيات والإتصالات كلية الهندسة – جامعة عين شمس

الدكتور / محسن طنطاوى استاذ مساعد بقسم الشبكات المعهد القومى للاتصالات - القاهرة

ACKNOWLEDGMENT

I wish to express my sincere appreciation to my supervisors Prof. Salwa El-Ramly, Prof. Magdy Ibrahim and Dr. Mohsen Tantawy for their precious instructions, kind care, their constructive advices, helpful and valuable guidance, heartfelt cooperation, strong encouragement and valuable comments during the course of this work. Moreover, Prof. S. El-Ramly, has a continuous guidance during the whole work through numerous discussions and meetings from which I learnt a great deal.

I would like to express my gratitude to my employer, The Egyptian Company for Mobile Services (Mobinil) for providing me with the needed freedom and flexibility for working on this thesis, my managers Rabie Kader Gad and Khaled Atta and my colleagues Ahmed Marzouk, Medhat Shoukry and George Nashaat. Further, without the support and encouragement of my Mother and Father this thesis would have never been finalized. Special thanks to my wife, Eng. Vivian Wanis for her support in reviewing the thesis and her invaluable feedback.

I would like also to express my gratitude to Tekelec, Mr. Andre Baumann and Dr. Dorgham Sisalem, for their great help and continuous support to complete this thesis.

Finally, I am further obliged to Patrick Ruhrig, University of Applied Sciences – Frankfurt ,Germany, Research Group for Telecommunication Networks, for help with configuring OpenSER and Dragos Vingarzan, Fraunhofer Institute for Open Communication Systems - FOKUS, Berlin-Germany, for many insightful discussions.

ABSTRACT

Wagdy Anis Aziz. **Design and Analysis of IP Multimedia Subsystem (IMS)**. Doctor of Philosophy, Ain Shams University, Faculty of Engineering, Electronics and Communication Engineering Department, 2010.

Over the last years the IP Multimedia Subsystem (IMS) has continuously gained in importance as the next generation communication network. The Session Initiation Protocol (SIP) was chosen the signaling protocol for session establishment and control in IMS.

The IP Multimedia Subsystem (IMS) is the technology that will merge the Internet (packet switching) with the cellular world (circuit switching). It will make Internet technologies, such as the web, email, instant messaging, presence, and videoconferencing available nearly everywhere.

IP Multimedia Subsystem (IMS) has resulted from the work of the Third Generation Partnership Project (3GPP) toward specifying an all-IP communication service infrastructure. Mainly looking at the needs and requirements of mobile operators, the 3GPP first specified IMS as a service architecture combining the Internet's IP technology and wireless and mobility services of current mobile telephony networks. After that the IMS architecture was extended to include fixed networks as well. By deciding to use session initiation protocol (SIP) as the signaling protocol for session establishment and control in IMS instead of developing its own set of protocols, 3GPP has opened the door toward a tight integration of the mobile, fixed and Internet worlds. Recent reports already indicate that there are more than 200 million subscribers using the IMS technology for telephony services.

Measuring the capacity of the (IMS) controllers is very important due to the critical role it plays in the Next Generation Network (NGN) of the Fixed and Mobile Networks. This thesis proposes a robust and scalable method that can be used to measure the capacity of the IMS controllers,

Call Session Control Function (CSCF) and benchmark their different vendors. The purpose of this method is to measure the capacity of the server in terms of how many calls are routable into a defined time interval and what the consequences of overloading the system are.

Evaluating the IP Multimedia Subsystem (IMS) Performance is very important due to the critical role it plays in the Next Generation Network (NGN) of the Fixed and Mobile Networks. This Thesis proposes robust and scalable methods that can be used to test the performance of the IP Multimedia Subsystem (IMS) controllers, Call Session Control Function (CSCF) and benchmark their vendors.

In this thesis we provide also a theoretical model that can be used by operators and network designers to determine the effects of introducing IMS to their networks in terms of bandwidth usage for example and the effects of losses and delays on the service quality. This model uses as the input various traffic characteristics such as the number of calls per second and mean holding time and network characteristics, such as losses and propagation delays. The output of the model provides details on the bandwidth and delay needed for successfully establishing a session when using SIP over UDP in IMS networks.

Voice traffic in IP Multimedia Subsystem (IMS) will be served using Internet Protocol (IP) which is called Voice over IP (VoIP). This chapter uses the "E-Model", (ITU-T G.107), as an optimization tool to select network and voice parameters like coding scheme, packet loss limitations, and link utilization level in IMS Network. The goal is to deliver guaranteed Quality of Service for voice while maximizing the number of users served. This optimization can be used to determine the optimal configuration for a Voice over IP in IMS network.

Key words:

IMS, SIP, VoIP, CSCF, SIPp, OpenSER, OPNET, MOS, E-Model.

Thesis supervisor:

Prof. Dr. Salwa Hussein El-Ramly

Prof. Emeritus, Electronics & Communications Engineering.

Department

Electronics and Communications Engineering Department,

Faculty of Engineering,

Ain Shams University,

Cairo, Egypt.

Prof. Dr. Magdy Mahmoud Ibrahim

Prof. Emeritus, Electronics & Communications Engineering.

Department

Electronics and Communications Engineering Department,

Faculty of Engineering,

Ain Shams University,

Cairo, Egypt.

Dr. Mohsen Tantawy

Associate Professor,

Network Department National Telecommunication Institute (NTI), Cairo, Egypt.

PUBLICATION ARISING FROM THIS THESIS

JOURNAL PAPERS

- 1. W. A. Aziz, S. H. EL-Ramly, M. M. Ibrahim, M. M. Tantawy "IP–Multimedia Subsystem (IMS) Performance Evaluation and Benchmarking" *Ain Shams Journal of Electrical Engineering (A S J E E)*, 2010. Paper ID: #440231, Vol (1), pp: 11-20, June 2010.
- 2. W. A. Aziz, S. H. EL-Ramly, M. M. Ibrahim, M. M. Tantawy "Capacity Measurement for IP–Multimedia Subsystem (IMS) Controllers " *Ain Shams Journal of Electrical Engineering (A S J E E)*, 2010. Paper ID: #450044, Vol (1), pp: 83-89, June 2010.
- 3. W. A. Aziz, S. H. EL-Ramly, M. M. Ibrahim, M. M. Tantawy "Voice over IP (VoIP) Quality Optimization in IP–Multimedia Subsystem (IMS) " *Ain Shams Journal of Electrical Engineering (A S J E E)*, 2010. Paper ID: #450043, Vol (1), pp: 31-42, June 2010.

CONFERENCE PAPERS (FULLY REFEREED)

- W. A. Aziz, S. H. EL-Ramly M. M. Ibrahim "IP-Multimedia Subsystem (IMS) Performance Evaluation and Benchmarking ", SIBIRCON-2010, the IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering. Irkutsk (Listvyanka), Russia, from 11st to 15th of July 2010.PaperID:#67.http://ieeexplore.ieee.org/search/freesearchresult.j sp?reload=true&newsearch=true&queryText=10.1109%2FSIBIRCO N.2010.5555343
- W. A. Aziz, S. H. EL-Ramly M. M. Ibrahim "Capacity Measurement for IP-Multimedia Subsystem (IMS) Controllers ", CIMSIM 2010.Second International Conference on Computational Intelligent, Modeling and Simulation, Bali 28-30 September 2010. Paper ID: #1569346511
- 3. W. A. Aziz, S. H. EL-Ramly, M. M. Ibrahim "Voice over IP (VoIP) Quality Optimization in IP-Multimedia Subsystem (IMS) ", CIMSIM 2010.Second International Conference on Computational Intelligent, Modeling and Simulation, Bali 28-30 September 2010. Paper ID: #1569351243
- 4. W. A. Aziz, S. H. EL-Ramly, M. M. Ibrahim "A Theoretical Model to Calculate the Bandwidth of IMS Session Establishment", *ISMS2011. 2nd International Conference on Intelligent Systems, Modeling and Simulation*, Kuala Lumpur, Malaysia, Monday 24 January 2011 and Phnom Penh, Cambodia, Thursday and Friday 27 and 28 January 2011.Paper ID: #1569376849

Table of Contents

Acknowledgment	i		
Abstract	ii		
Publication Arising From This Thesis Table of Contents List of Figures List of Tables List of Abbreviations	v		
	vii		
	xiv xvii xviii		
		CHAPTER 1	1
		INTRODUCTION AND MOTIVATION	
1.1 Introduction	1		
1.2 Problem Statement	3		
1.3 Thesis Contribution	3		
1.4 Thesis Structure	4		
CHAPTER 2	5		
TELEPHONY EVOLUTION			
2.1 Introduction	5		
2.2 Motivation	6		
2.3 Today's Story-Exiting Technologies	9		
2.3.1 GSM	10		
2.3.2 GPRS	10		
2.3.3 UMTS	11		
2.4 Next Story-IP Multimedia Subsystem	11		
2.4.1 Requirements of Communication Market	11		
2.4.1.1 User Requirements	11		
2.4.1.2 Enterprise Requirements	13		
2.4.1.3 Operator Requirements	14		
2.4.2 What is IMS?	15		

2.4.3 IMS Architecture Overview	16
2.4.4 IMS Major Components	17
CHAPTER 3	18
IP MULTIMEDIA SUBSYSTEM (IMS) ARCHITECTURE	
3.1 Introduction	18
3.2 History	19
3.3 IMS Architecture	20
3.3.1 Access Network	21
3.3.2 Subscriber and User Equipment(UE)	23
3.3.2.1 User and Service in IMS	23
3.3.2.2 Subscriber Identity Modules (SIM)	25
3.3.2.3 Generation and Storage of User Identities	28
3.3.3 Signaling Components	29
3.3.3.1 Proxy Call Session Control Function (P-CSCF)	29
3.3.3.2 Interrogating Call Session Control Function (I-CSCF)	29
3.3.3.3 Serving Call Session Control Function (I-CSCF)	29
3.3.4 Interworking Components	30
3.3.4.1 Interconnection Border Control Function (IBCF)	31
3.3.4.2 Border Gateway Control Function (BGCF)	33
3.3.4.3 Media Gateway Control Function (MGCF)	34
3.3.4.4 Signaling Gateway (SGW)\	34
3.3.4.5 Media Gateway (MGW)	34
3.3.5 QoS Related Components	35
3.3.6 Application and Service Provisioning Related Components	36
3.3.7 Database Related components	38
3.3.8 Charging in IMS	38
CHAPTER 4	41
IP MULTIMEDIA SUBSYSTEM (IMS) SIGNALING	
ANALYSIS	
4.1 Introduction	41

4.2 Protocols Used in IMS	41
4.2.1 Session Initiation Protocol (SIP)	41
4.2.1.1SIP Network Elements	42
4.2.1.1.1 User Agent (UA)	42
4.2.1.1.2 SIP Servers	42
4.2.1.2 SIP Request	44
4.2.1.2.1 INVITE	44
4.2.1.2.2 BYE	45
4.2.1.2.3 CANCEL	45
4.2.1.2.4 REGISTER	45
4.2.1.2.5 OPTIONS	46
4.2.1.3 SIP Response	46
4.2.1.4 SIP Session Setup	46
4.2.2 SIP in IMS	48
4.2.3Session Description Protocol (SDP)	48
4.2.4 Real-time Transport Protocol(RTP)	49
4.2.5 Real-time Transport Control Protocol(RTCP)	49
4.2.6 The Secure Real-time Transport Protocol (SRTP)	50
4.2.7 Diameter	50
4.3 IMS Interfaces or Reference Points	50
CHAPTER 5	54
CAPACITY MEASUREMENT FOR IMS CONTROLLERS	3
5.1 Introduction	54
5.2 Related Work	54
5.3 Experimental Test Bed	56
5.3.1 SIP Server Software	57
5.3.2 SIP Client Workload Generator	57
5.3.3 Client and Server OS Software	57
5.3.4 Hardware and Connectivity	57
5.3.5 Experiments and Metrics	58

5.3.6 Restrictions, Limitations and Scope	58
5.4 Measurement Scenario	58
5.5 Results	60
5.6 Conclusion	64
CHAPTER 6	66
IP MULTIMEDIA PERFORMANCE EVALUATION	
6.1 Introduction	66
6.2 Related Work	66
6.3 New Proposed Methods for IMS Performance Evaluation	67
6.3.1 FUZZING Testing (PROTOS)	68
6.3.2 Testing with Spectra 2 SE	78
6.4 Conclusion	81
CHAPTER 7	83
IMS SESSION SETUP ANALYSIS	
7.1 Introduction	83
7.2 Related Work	84
7.3 Background	86
7.3.1 IMS Architecture	86
7.3.2 SIP in IMS	88
7.3.2.1 INVITE-retransmissions	90
7.3.2.2 Non-INVITE-retransmissions	90
7.4 IMS Session Establishment Phases	90
7.4.1 INVITE / 100 Trying (1-14)	92
7.4.2 Session Progress 183 / PRACK (15-26)	92
7.4.3 PRACK/ 200 OK (22-31)	92
7.4.4 UPDATE / 200 OK (32-41)	93
7.4.5 Ringing 180 / PRACK (42-52)	93
7.4.6 PRACK/ 200 OK (48-57):	93
7.4.7 Final Response (200 OK) / ACK (58-68)	93
7.4.8 BYE / 200 OK	94