

Biochemical Studies on the Production of Some Lignin-degrading Enzymes (LDEs) by Some Marine Fungal Isolates.

Thesis Submitted For Fulfillment of the Degree of Doctor of Philosophy in Science (Microbiology)

By
Abeer Abas Abd El Aty Abas Mohamed
(B.Sc. in Microbiology-Chemistry 2000)
(M. Sc. In Microbiology 2007)

Supervised by

Dr. Zeinab Mohamed Hassan Kheiralla

Professor of microbiology, Botany Department, Women's College for Arts, Science and Education, Ain Shams University.

Dr. Mohamed Mabrouk M. Atalla

Professor of Chemistry of Microbial Products, Chemistry of Natural and Microbial Products Department, National Research Centre.

Dr.Amani Ahmed Youssry

Ass. Professor of microbiology, Botany Dept. Women's College for Arts, Science and Education, Ain Shams University.

Dr. Eman Ramadan Hamed

Ass. Professor in Chemistry of Natural and Microbial products Department, National Research Centre.

دراسات كيميائية حيوية علي إنتاج بعض الإنزيمات المحللة للجنين بواسطة بعض الفطريات البحرية

رسالة مقدمة من عبير عباس عبد العاطى عباس العام ميكروبيولوجى - كيمياء (2000) (ماجستير ميكروبيولوجى - 2007)

للحصول على درجة دكتوراه الفلسفة في العلوم (ميكروبيولوجي)

قسم النبات كليه البنات للآداب و العلوم و التربية جامعه عين شمس Name of Candidate: Abeer Abas Abd-El Aty Abas.

Title of Thesis: Biochemical Studies on the Production of Some Lignin-degrading Enzymes (LDEs) by

Some Marine Fungal Isolates.

Department: Ain Shams University, Faculty of Girls for Arts, Science and Education, Botany Department.

ABSTRACT

Marine-derived fungi are a potential for the search of new with relevant features. Among these. ligninolytic enzymes have potential applications in a large number of fields, including the environmental and industrial sectors. This work aimed to evaluate the enzymatic activities of eighty eight marine fungal isolates obtained from different algae, sea grasses and decayed wood samples collected from Abou-keer, Alexandria, Egypt. All fungal isolates screened for the presence of lignin-degrading enzymes by qualitative and quantitative assay methods. Results indicated that the marine fungal isolate *Trematosphaeria mangrovei* showed the highest laccase activity and the other two ligninolytic activities could not be detected. Among the different agricultural residues screened for laccase production, saw dust was the most suitable substrate for enzyme production (59.92±0.73 U/ml). Results also showed that the simple Boyd &Kohlmeyer medium gave laccase activity of 76.80±1.07 U/ml and supplementation of (2.5 mM) CuSO4.5H₂O on day 6 yielded high amounts of laccase (441.43±10.59 U/ml) at an incubation period of 14 days and incubation temperature of 28-30 °C under static conditions. Different experiments were carried out to optimize the cultural and nutritional conditions for the production of active laccase such as concentration and time of addition of the inducer, concentration of carbon and nitrogen sources, percent of salinity, rate of agitation, optimum temperature and pH. General properties of the crude laccase enzyme

determined. Partial purification of the crude enzyme was carried out by fractional precipitation with 60% acetone. The purification was achieved on sephadex G-100 column and SDS-PAGE of the purified laccase enzyme showed a single band at 48 K Dalton. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO₄ completely inhibited laccase enzyme and also highly affected by (NaN₃) at a concentration of 1mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The U.V absorption spectra of the purified laccase enzyme showed a single peak at 260-280 nm.

Key words: Marine fungi, lignin-degrading enzymes, lignin-modifying enzymes, ligninases, laccase, fermentation, agricultural wastes.

CONTENTS

List of Figures	VIII
List of Tables	XI
List of abbreviations	XIV
ABSTRACT	XVI

INTRODUCTION1
REVIEW OF LITERATURE3
MATERIALS AND METHODS21
1- MATERIALS 21
1.1. Chemicals21
1.2. Media21
1.3. Buffers
2-METHODS24
2.1. Microorganisms 24
2.2. Qualitative assay for lignin-degrading enzymes (LDEs) production
2.3.Quantitative estimation of lignin-degrading enzymes25
2.4. Assay for enzyme activities26
2.5. Laccase enzyme production under different nutritional conditions
2.6. Effects of some physiological factors on the production of laccase (Lac) by <i>T. mangrovei</i> 29

2.7. Estimation of fungal dry weight	31
2.8. General properties of the crude laccase enzyme.	31
2.9. Fractional precipitation and partial purifical laccase enzyme from <i>Trematosphaeria mangrovei</i>	
2.10. Gel filtration on sephadex G-100 column	34
2.11. Electrophoresis	34
2.12. Physicochemical properties of purified enzyme	
2.13. Amino acid analysis of the purified laccase enz	yme41
2.14. Carbohydrate content of purified laccase enzyr	ne42
2.15. U.V absorption spectra of purified laccase enzy	me43
2.16. Determination of total proteins	43
2.17. Standard curve for laccase enzyme	45
RESULTS	46
1-Isolation	46
1.1. Isolation of marine fungi from algae samples	46
1.2. Isolation of marine fungi from sea grasses and wood samples	•

2. Survey of some marine fungal isolates for lignin-degrading enzyme activities49
2.1. Lignin modifying enzymes (LMEs) assay (guaiacol oxidation)49
2.2. Growth and oxidation characteristics49
2.3. Enzymes production in liquid medium54
3. Production of laccase enzyme under various cultivation conditions
3.1. Survey of medium favoring laccase enzyme production
3.1.1. Laccase production in agricultural residues - containing medium
3.1.2. Laccase production in B&K medium with different inducers
4. Optimization of medium composition for laccase
enzyme production65
4.1. Effect of the inducer65
4.1.1. Effect of time of addition of CuSO ₄ and incubation period on laccase production65
4.1.2. Effect of different concentrations of CuSO ₄ on laccase production

4.2. Optimization of the basal medium	71
4.2.1. Effect of different carbon sources	71
4.2.2. Effect of different sucrose concentrations	72
4.2.3. Effect of different nitrogen sources	72
4.2.4. Effect of different peptone and yeast extract concentrations	
4.2.5. Effect of salinity on laccase production	74
4.2.6. Effect of agitation rate (rpm)	85
4.2.7. Effect of initial pH	85
4.2.8. Effect of incubation temperature	86
5. General properties of the crude laccase en preparation from <i>T. mangrovei</i>	•
5.1. Effect of temperature of the reaction	93
5.2. Effect of pH value of the reaction	93
5.3. Thermal stability of the crude laccase	94
5.4. pH stability of the crude laccase	94

5.5. Effect of enzyme concentration on crude enzyme activity
5.6. Effect of substrate concentration on crude enzyme activity
6. Fractional precipitation and partial purifycati on of laccase enzyme from <i>Trematosphaeric mangrovei</i>
6.1. Ammonium sulphate fractionation108
6.2. Acetone fractionation108
6.3. Ethanol fractionation109
7. Gel filtration on sephadex G-100 column116
8. Characterization and kinetic properties of the pure <i>T. mangrovei</i> laccase enzyme
8.2. Effect of temperature124
8.3. Effect of pH value124
8.4. Thermal stability of pure laccase enzyme at pH 4.0124
8.5. pH stability of pure laccase enzyme at 65 °C125

8.6. Effect of enzyme concentration on enzyme activity purified laccase	•
8.7. Effect of substrate (ABTS) concentration on enzyme activity	_
8.8. Kinetic parameters (Km and Vmax values) of mangrovei laccase	
8.9. Substrate specificity	.141
8.10. Effect of metal ions on the activity of pur enzyme	
8.11. Effect of inhibitors on the activity of pur enzyme	
8.12.Amino acid analysis of the purified laccase enzyme	.146
8.13. Carbohydrate content of purified laccase enzyme.	148
8.14. U.V absorption spectra of purified laccase enzyme	.148
DISCUSSION	149
SUMMARY	.170
CONCLUSION	.175
RECOMENDATION	175
REFERENCES	176

ARABIC	SUMMARY	1
---------------	---------	---

List of Figures

Fig. No.	Page
Fig.1:The laccase active site	9
Fig.2:Oxidation of phenolic subunits of lignin by lacca	se10
Fig.3:Oxidation of nonphenolic lignin model compoun	nd by
a laccase mediator system	11

Fig.4:Standard curve for protein44
Fig.5:Standard curve for laccase enzyme
Fig.6:Photo of B&K agar plate showing positive guaiacol
oxidation by seven fungal isolates obtained from
decayed wood samples after 7 days of inoculation52
Fig.7:Characterization of laccase activity of some marine
fungal isolates56
Fig.8:Production of laccase enzyme by T. mangrovei on
different lignocellulosic substrates61
Fig.9:Effect of various inducers on laccase enzyme
production under different incubation time64
Fig.10:Effect CuSO ₄ addition time as an inducer on
laccase enzyme production68
Fig.11:Effect of varying copper sulphate concentrations on
laccase production70
Fig.12:Effect of different carbon sources on laccase enzyme
production76
Fig.13: Effect of different sucrose concentrations on laccase
enzyme production78
Fig.14:Effect of different nitrogen sources on laccase
enzyme production80
Fig.15:Effect of different peptone and yeast extract
concentrations on laccase enzyme production82
Fig.16:Influence of salinity on laccase enzyme
production84
Fig.17:Effect of agitation rate (rpm) on laccase enzyme
production88
Fig.18:Effect of different initial pH values on laccase
enzyme production90
Fig.19:Effect of different incubation temperature on laccase
enzyme production92
Fig.20:Effect of temperature of the reaction on crude
laccase enzyme activity96

Fig.21:Effect of pH of the reaction on crude laccase enzyme
activity98
Fig.22:Thermal stability at pH 4.5 of the crude laccase
enzyme from <i>T. mangrovei</i> 100
Fig.23:pH stability at 35 °C of the crude laccase enzyme
from <i>T. mangrovei</i> 102
Fig.24:Effect of different enzyme concentrations on crude
enzyme activity105
Fig.25:Effect of substrate concentrations on crude enzyme
activity107
Fig.26:Fractional precipitation of T. mangrovei laccase
enzyme by ammonium sulphate111
Fig.27:Fractional precipitation of T. mangrovei laccase
enzyme by acetone113
Fig.28:Fractional precipitation of <i>T. mangrovei</i> laccase
enzyme by ethanol115
Fig.29:Gel filtration on Sephadex G-100 column118
Fig.30:Native PAGE of T. mangrovei laccase enzyme120
Fig.31:Molecular weight determination by using low
molecular weight protein markers122
Fig.32:(SDS-PAGE) polyacrylamide disc electrophoresis of
pure laccase from T. mangrovei123
Fig.33:Effect of different temperature of the reaction on
pure laccase activity127
Fig.34:Effect of different pH values of the reaction on pure
laccase enzyme activity129
Fig.35:Thermal stability at pH 4.0 of the pure laccase
enzyme from T. mangrovei131
Fig.36:pH stability at 65 °C of the pure laccase enzyme from
<i>T. mangrovei</i>
Fig.37:Effect of different enzyme concentrations on pure
enzyme activity136

Fig.38:Effect of substrate concentrations on pure enzyme
activity138
Fig.39:Lineweaver-Burk plot for ABTS hydrolysis by T.
mangrovei laccase enzyme140
Fig.40:Effect of metal ions on T. mangrovei laccase
activity144
Fig.41:Effect of inhibitors on T. mangrovei laccase
activity145
Fig.42:Amino acid analysis of the purified laccase
enzyme147
Fig.43:U.V. absorption spectra of purified laccase
enzyme148
List of Tobles
List of Tables
Table No. Page
Table 1. Dyenovation of SDS DACE calc
Table 1: Preparation of SDS-PAGE gels
Table2: Fungal isolates associated with marine algae
samples
Table3: Fungal isolates associated with sea grasses and
decayed wood samples48

Table4: Screening of all fungal isolates for guaiacol
oxidation (enzyme production assay)51
Table5: Qualitative assay for lignin-degrading enzymes
production53
Table6: Quantitative estimation of lignin - degrading
enzymes produced by the selected marine fungal
isolates55
Table7: Evaluation of some agricultural wastes as a
substrate for laccase enzyme production by T .
mangrovei60
Table8: Evaluation of various inducers and effluents as a
substrate for laccase enzyme production by T.
mangrovei62
Table 9: Effect of addition time of CuSO ₄ as an inducer on
laccase enzyme production 67
Table 10: Effect of different concentrations of CuSO ₄ as an
inducer on laccase enzyme production69
Table 11: Effect of different carbon sources on laccase
enzyme production
Table 12: Effect of different sucrose concentrations on
laccase enzyme production77
Table 13: Effect of different nitrogen sources on laccase
enzyme production79
Table 14: Effect of different peptone and yeast extract
concentrations on laccase enzyme production81
Table 15: Effect of different sea water proportions (salinity)
on laccase enzyme production83
Table 16: Effect of agitation rate (rpm) on laccase
enzyme production87
Table 17: Effect of different initial pH values on laccase
enzyme production89