OPTIMIZING OF NITROGEN FERTILIZATION UNDER DRIP IRRIGATION SYSTEM IN SANDY SOIL USING NUCLEAR TECHNIQUES

By

AHMED EL SAYED FAHMY MOHAMED

B.Sc. Agric. Sc. (Agricultural Engineering), Zagazig University, 2000M.Sc. Agric. Sc. (Land and Water Management: Irrigated Agric.), Bari, Italy, 2006

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Agriculture Sciences
(On Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

OPTIMIZING OF NITROGEN FERTILIZATION UNDER DRIP IRRIGATION SYSTEM IN SANDY SOIL USING NUCLEAR TECHNIQUES

By

AHMED EL SAYED FAHMY MOHAMED

B.Sc. Agric. Sc. (Agricultural Engineering), Zagazig University, 2000 M.Sc. Agric. Sc. (Land and Water Management: Irrigated Agric.), Bari, Italy, 2006

This thesis for Ph.D. degree has been approved by: Dr. Gamal Hassan El Sayed Head of Research Emeritus of Agricultural Engineering, Agricultural Engineering Research Institute. Agricultural Research Center. Dr. Mohamed El Sayed Galal Prof. of Soil Sciences, Department of Soil Science, Faculty of Agriculture, Ain Shams University. Dr. Yasser Ezzat Arafa Associate Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. Dr. Abdel-Ghany Mohamed El-Gindy Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agricultural, Ain Shams University.

Date of Examination: 4/6/2016

OPTIMIZING OF NITROGEN FERTILIZATION UNDER DRIP IRRIGATION SYSTEM IN SANDY SOIL USING NUCLEAR TECHNIQUES

By

AHMED EL SAYED FAHMY MOHAMED

B.Sc. Agric. Sc. (Agricultural Engineering), Zagazig University, 2000 M.Sc. Agric. Sc. (Land and Water Management: Irrigated Agric.), Bari, Italy, 2006

Under the Supervision of:

Dr. Abdel-Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Yasser Ezzat Arafa

Associate Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Hussein Ahmed Abdel Aziz

Prof. of Soil Sciences, Department of Soils and Water Research, Nuclear Research Center, Atomic Energy Authority

ABSTRACT

Ahmed El Sayed Fahmy Mohamed: Optimizing of Nitrogen Fertilization under Drip Irrigation System in Sandy Soil Using Nuclear Techniques. Unpublished Ph.D. Dissertation, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2016.

Sand soil is characterized as poor fertile and no structured one therefore irrigation water may lose rapidly from the soil profile. Cultivation of such soils needs more attention to be paid for water and nutrient, especially nitrogen, management. In this regard, nitrogen management should provide an adequate supply for a crop throughout the growing season. If the amount of nitrogen is limiting at any time, there is a potential for loss in production. This work aimed to improve nitrogen efficiency as affected by irrigation water regime, N forms and rates (splitted doses). Therefore, a field experiment on sandy soil was conducted to trace the beneficial effects of urea and ammonium sulfate fertilizers added at different rates on pea growth and nutritional values as interacted with different water regimes. ¹⁵Nisotope dilution technique was followed to distinguish between the different N proportions derived to pea plants and in the same time estimating the efficient use of both two nitrogen forms (%NUE). Water regime and fertilization treatments were applied under surface drip irrigation system. Two water regimes represented 100% and 75% of water requirement in combination with three N fertilizer rates, i.e. N_0 , N_{100} and N_{75} were applied.

The overall means of seed yield as affected by nitrogen fertilization treatments represent relative increase accounted for 45.8%, 38.7%, 41.7% and 36.2% over the unfertilized control for Urea₁₀₀, Urea₇₅, Ammonium Sulfate₁₀₀ and Ammonium Sulfate₇₅, respectively. It seems that 100% water regime (W1) made nitrogen fertilizer, especially with high rate, more available for plant uptake comparing to the low water quantity regime. Pea crop had accumulated more nitrogen from urea comparing to ammonium sulfate fertilizer. Nitrogen uptake, in general, significantly correlated to application rate.W1water regime in combination with ammonium sulfate fertilizer resulted in the best percentage or absolute values of N derived from

fertilizer by pea seeds. It was clear that efficient use of ammonium sulfate, to some extent, doesn't affected by different water regimes. This holds true either at 100% or 75% application rates. On the other hand, urea added at rate of 75% was more efficiently used by seeds than those added at rate of 100% of the recommended rate.

Application of 75% of Etc (W2) treatment gave a remarkable yield and pronounced water saving therefore it is technically and economically recommended. For instant, the overall mean of water regime indicated that seed yield (2184.4 kg ha⁻¹) achieved by W1 (100%) was nearly closed to those obtained with W2 (75%) (2167.4 kg ha⁻¹).

Key words:

¹⁵N, Irrigation Regimes, Nitrogen Fertilizer Form, Pea and Water use efficiency.

ACKNOWLEDGMENT

The author would like to express his deep thanks and appreciation to Prof. Dr. Abdel-Ghany Mohamed El-Gindy and Dr. Yasser Ezzat Arafa, Prof emeritus and Associate Prof at Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University, for suggestion the point of study and continuous encouragement that help and giving him the possibility to complete this study.

Also deep thanks to Prof. Dr. Hussein Ahmed Abdelaziz, Head of Soils & Water Research Department, Radioisotope Application Division, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt. Due to this work would not have been possible without his support and sustain. This acknowledgment is extended to Prof. Dr. Yehia Galal M. Galal, Prof. Dr. Mohamed Abd El-Moniem and Dr. Abdel-Tawab Zedan for their great efforts to facilitate the requirements of the work.

There are many people helped and contributed to complete this work, the author want to take the opportunity to thanks them all, especially who helped me in away or another in the completion of this work. The author sincerely thankful to all staff members of Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University and Soils & Water Researches Department, Atomic Energy Authority.

CONTENTS

Items	Page
LIST OF TABLES	iv
LIST OF FIGUERS	V
LIST OF ABBREVIATIONS	vii
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Irrigation management	3
1.1. Irrigation scheduling	4
1.2. Water use efficiency	5
2. Drip Irrigation System	5
3. Sandy Soil Characteristics	7
3.1. Fertilization of Sandy Soils	7
4. Nitrogen Fertilization	8
4.1. Nitrogen Management in Soils	8
4.2. Nitrogen Management in Agriculture	11
5. Nuclear Techniques Methods	14
5.1. Neutron Scattering Method	14
5.2. Application of ¹⁵ N stable isotope dilution technique	16
5.2.1. Isotopic techniques in N fertilizer use efficiency studies	17
5.2.2. Measurements needed for experiments with ¹⁵ N	18
5.2.3. Calculations for experiments with ¹⁵ N	18
5.2.4. Quantification of fertilizer N uptake	18
5.2.5. Urea-N movement with water distribution	19
6. Mathematical Modeling of Water Flow	19
MATERIALS AND METHODS	24
1. Description of the site	24
2. Soil analysis	24
2.1. Soil mechanical physical properties	24

3. Irrigation treatments (Water application rate)	24
4. Drip irrigation system components	26
5. Experimental layout	26
6. Soil preparation and fertilization	27
7. Experimental design and statistical analysis	27
8. Description of field calibration of neutron moisture meter and	29
modeling techniques	
8.1. Neutron calibration of neutron moisture meter	29
9. Mathematical Modeling	32
9.1. Image of Russian Drip Irrigation Model Program (SAD)	32
9.2. Water requirements for SAD programs	34
10. Measurements and calculations	35
10.1. Emission uniformity (EU)	35
10.2. Soil moisture distribution	36
10.3. Use of ¹⁵ N technique	37
10.3.1. Measurement of nitrogen stable isotope	37
10.4. Plant measurements	37
10.5. Water use efficiency (WUE)	37
11. Isotope dilution	38
11.1. Principles and equations	38
11.2. ¹⁵ N-Analysis	38
RESULTS AND DISCUSSION	39
1. Neutron Calibration Curve	39
2. Mathematical model (VBKAP, SAD)	43
3. Effect of water regimes and Nitrogen fertilization treatments on	45
vegetative growth parameters	
3.1. Shoot length	45
3.2. Root length	46
4. Effect of water regime on Pea yield	48
5. Dry weight of pea plant	50

5.1. Root and Shoot dry weight	50
6. Water Use Efficiency (WUE) and water productivity	53
7. Effect of Irrigation Water Rates on Nitrogen Uptake	55
8. Nitrogen use efficiency (%NUE)	61
SUMMARY AND CONCLUSION	64
REFERENCES	67
ARABIC SUMMARY	

LIST OF TABLES

No.	Items	Page
1	Some physical characteristics of the soil of the experimental site	24
2	Applied amounts of irrigation water for Pea crop at different	25
	growing stages under studied area condition	
3	Regression equation of calibration curves of the 5 locations around	31
	emitter and for the different soil depths under studied	
4	Data for calculating emission uniformity for the drip irrigation	35
	system under study	
5	Shoot length (cm) as affected by water regime, N fertilizer form	45
	and rates under drip irrigation system	
6	Root length (cm) as affected by water regime, N fertilizer form	46
	and rates under drip irrigation system	
7	Seed yield (kg ha ⁻¹) of Pea crop as affected by water regime, N	49
	fertilizer form and rates under drip irrigation system	
8	Root and shoot dry weight (kg ha ⁻¹) as affected by water regime, N	51
	fertilizer form and rates under drip irrigation system	
9	Water Productivity and Water use Efficiency as kg/m³ under pea	53
	crop affected by water regime and nitrogen fertilization strategy	
10	Nitrogen Uptake by pea roots, shoots, and seeds (kg ha ⁻¹) as	55
	affected by nitrogen form and rates and irrigation water regimes	
11	Nitrogen derived from fertilizer by root, shoot and seeds of pea	59
	crop (% and kg ha ⁻¹) as affected by water regime and nitrogen	
	form and rates under drip irrigation system	
12	Nitrogen use efficiency (%NUE) by root, shoot and seeds of pea	61
	crop as affected by water regime and nitrogen form and rates	
	under drip irrigation system	

LIST OF FIGURES

No.	Items	Page
1	Experimental layout	28
2	Layout of field calibration experiment	29
3	Schematic drawing of Neutron Moisture Meter CPN 503 DR	30
4	Emission uniformity of the drip irrigation system under study	36
5	Neutron calibration curves for the five sites at 30 cm depth	41
6	Neutron calibration curves for the five sites at 45 cm depth	41
7	Neutron calibration curves for the five sites at 60 cm depth	42
8	Neutron calibration curves for the five sites at 75 cm depth	42
9	Comparing Between the fielded data with the calculated program	44
	results	
10	Shoot length (cm) as affected by water regime, N fertilizer form	45
	and rates under drip irrigation system	
11	Root length (cm) as affected by water regime, N fertilizer form	47
	and rates under drip irrigation system	
12	Seed yield (kg ha ⁻¹) of Pea crop as affected by water regime, N	49
	fertilizer form and rates under drip irrigation system	
13	Root and shoot dry weight (kg/ha) as affected by water regime, N	52
	fertilizer form and rates under drip irrigation	
14	Water use Efficiency as kg/m ³ under pea crop affected by water	54
	regime and nitrogen fertilization strategy	
15	Water productivity as kg/m ³ under pea crop affected by water	54
	regime and nitrogen fertilization strategy	
16	Nitrogen Uptake of Pea Roots, Shoots, and Seeds (kg ha ⁻¹) as	57
	affected by Nitrogen form and rates and Irrigation Water Regimes	
17	Nitrogen derived from fertilizer by root, shoot and seeds of pea	60
	crop (kg ha ⁻¹) as affected by water regime and nitrogen form and	
	rates under drip irrigation system	

18 Nitrogen use efficiency (%NUE) by root, shoot and seeds of pea crop as affected by water regime and nitrogen form and rates under drip irrigation system

LIST OF ABBREVIATIONS

Symbol Name

= Discharge rate of emitter (lph) q

Kd = A coefficient specific to each emitter CV= Coefficient of manufacturing variation

 \boldsymbol{q}_{avg} = Mean emitter flow rate (lph)

MD = Deviations of the single readings from the mean value, qm = Minimum emitter discharge of test sample operated at the mu

reference pressure (lph)

qa = Average emitter discharge (lph)

Η = Minimum emitter operating pressure (m)

H = Average emitter operating pressure (m)

 $\boldsymbol{Q}_{12.\,5\%}$ = Is the mean precipitation value in 12.5% emitters with the

highest flow rate

EU = Emission uniformity [%]

R = The radius of the neutron sphere in cm

 \mathbf{v} = The volumetric moisture content expressed as %

ETo = Reference evapotranspiration

ETc = Crop evapotranspiration

kc = Crop coefficient

W1= Treatment 100 % ETc W2= Treatment 75 % ETc

= Mean discharge of emitters(l/h)

S = Standard deviation of emitters discharge

хi = Emitter discharge (l/h) n = Number of emitters

 Q_{n} = Mean of the lowest quarter of discharge of the selected emitters

(1/h)

 $\mathbf{Q}_{\mathbf{a}}$ = Mean of the total discharge rate (l/h)

No = without Fertilization N_{U100} = 100% Urea Rate = 75% Urea Rate N_{U75}

= 100% Ammonium Sulfate Rate Nas100 NAS75 = 75% Ammonium Sulfate Rate Ndff = Nitrogen derived from fertilizer = Deficits of air humidity, mb ds

= Empirical coefficients of the regression equation = Relative time a, b

tr

INTRODUCTION

Due to irrigation water scarcity especially at semi-arid regions in addition to low fertility of sand soil, more efforts should be paid to achieve the proper scenario of water management and optimization of chemical nitrogen fertilizers for achievement of the best crop production with reduced water supply and fertilizer requirements.

In this respect, management of irrigation water and fertilizers plays vital roles for increasing productivity and quality of agricultural crops, as well as, application of appropriate technologies such as pressurized irrigation systems and chemigation which helps in improvement of water and fertilizers use efficiencies. Neutron scattering and ¹⁵N techniques help for developing out the distribution of irrigation water in the soil profile, soil water and nitrogen fluxes, which helps to use water and fertilizers modeling under Egyptian conditions.

 15 N isotope dilution technique was followed to distinguish between the different N proportions derived to pea plants and in the same time estimating the efficient use of both two nitrogen forms (%NUE). Water regime and fertilization treatments were applied under surface drip irrigation system. Two water regimes represented 100% and 75% of water requirement in combination with three N fertilizer rates, i.e. N_0 , N_{100} and N_{75} were applied.

The proper management of irrigation water and fertilizer resulted in increasing and improving of plant productivity and in the same time, minimizing the environmental hazardous impact. The proper management, in this respect, may induced an increase of water and/or fertilizer use efficiency (WUE % and FUE %).

The movement of water within soil profile is of great importance in utilizing, designing and managing of irrigation system networks. These processes are very dynamic, changing dramatically over time and space. Soil properties and water application rates interact in complex ways within the soil system to determine the direction and rate of movement of the water. Researchers have