MECHANISM OF CERTAIN ENZYMATIC DEFENCE SYSTEMS IN RESISTANCE OF PEACH FRUIT TO INSECTICIDES

By

HASSAN ISMAIL ISMAIL SHEHAB

B. Sc. Agric. Sc. (Pesticides), Ain Shams University, 1997M. Sc. Agric. Sc. (Pesticides), Ain Shams University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Pesticides)

Department of Plant Protection
Faculty of Agriculture
Ain Shams University
2011

Approval Sheet

MECHANISM OF CERTAIN ENZYMATIC DEFENCE SYSTEMS IN RESISTANCE OF PEACH FRUIT TO INSECTICIDES

By

HASSAN ISMAIL ISMAIL SHEHAB

B. Sc. Agric. Sc. (Pesticides), Ain Shams University, 1997M. Sc. Agric. Sc. (Pesticides), Ain Shams University, 2004

i nis tne	sis for Pn.	D . 0	iegree nas i	oeen approv	vea b	y:
Dr.Moni	ir Dawood	Ab	dullah			
Prof	: Emeritus	of	Pesticides	Chemistry	and	Toxicology,
Facu	ılty of Agri	cult	ure, Cairo U	Iniversity		
Dr.Moh	amed El-Sa	aid]	El-Zemaity			
Prof.	Emeritus	of	Pesticides	Chemistry	and	Toxicology,
Facu	lty of Agric	ultu	ıre, Ain Sha	ms Universi	ty	
Dr.Esma	t Mohamr	ned	Kamel Hu	ssien		
Prof.	Emeritus	of	Pesticides	Chemistry	and	Toxicology,
Facu	lty of Agric	ultu	ıre, Ain Sha	ms Universi	ty	
Dr.Moh	ammed Ibi	ahi	m Abd El-I	Megeed		
Prof.	Emeritus	of	Pesticides	Chemistry	and	Toxicology,
Facu	lty of Agric	ultu	ıre, Ain Sha	ms Universi	ty	

Date of Examination: 4 / 11 /2010

MECHANISM OF CERTAIN ENZYMATIC DEFENCE SYSTEMS IN RESISTANCE OF PEACH FRUIT TO INSECTICIDES

By

HASSAN ISMAIL ISMAIL SHEHAB

B. Sc. Agric. Sc. (Pesticides), Ain Shams University, 1997M. Sc. Agric. Sc. (Pesticides), Ain Shams University, 2004

Under the supervision of:

Dr. Mohamed Ibrahim Abd El-Megeed

Prof. Emeritus of Pesticides Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Esmat Mohammed Kamel Hussien

Prof. Emeritus of Pesticides Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Mostafa Mostafa Abd El-Sattar

Head of Research of Pesticides Chemistry and Toxicology, Central Agricultural Pesticide Laboratory, Agricultural Research Center

ABSTRACT

Hassan Ismail Shehab: Mechanism of Certain Enzymatic Defence Systems in Resistance of Peach Fruit to Insecticides. Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2011.

Peach fruit flies, Bactrocera zonata (Saunders), were treated as contact of four insecticides, of a residual which organophosphates (fenitrothion and malathion), one carbamate (methomyl), and one pyrethroid (fenvalerate), under laboratory conditions. Subparental lines of each generation treated with the same insecticide were selected for 10 generations and were designated as xr lines (x, insecticide; r, resistant). The parent colony was maintained, under the same conditions, as the susceptible colony. The line treated with fenvalerate exhibited the lowest increase in resistance (9.38fold), whereas the line treated with malathion showed the highest increase in resistance (up to 78-fold) compared with the susceptible colony.

Three field populations of the insect, under experimentation, were collected from Behira, Gharbia, and Giza governorates of Egypt, and tested for their adult susceptibility to the for mentioned insecticides by residual contact. Marked regional variations to insecticide susceptibility were observed. The highest level of resistance was recorded in malathion and methomyl populations, while the lowest was observed with the pyrethroid fenvalerate. However, resistance to fenitrothion ranked in between. Behira strain which exhibited high level of resistance followed by Gharbia, while Giza strain came last. These results indicate the rotational use of these insecticides should result in continued satisfactory control against field populations of this serious insect pest.

Biochemical analysis indicated that elevated glutathione S-transferases (GSTs), superoxide dismutase (SOD), and catalase (CAT) activity, to gather with depletion of glutathione (GSH) level conferred resistance to both malathion and methomyl, but partially to fenitrothion.

The laboratory resistance to the insecticide tested together with the undertaken may provide useful tools and/or information for forthcoming insecticide management strategy to control such fruit fly in the field.

Keywords: Peach fruit fly; *Bactrocera zonata*; insecticides resistance; insecticides; Biochemical analysis; Superoxide dismutase; Catalase; Glutathione S-transferase.

ACKNOWLEDGEMENT

Ultimate thanks and gratitude El- mighty ALLHA

I would like to express gratitude to Professor Dr. **Mohamed Ibrahim Abdel-Megeed**, Professor of Pesticides chemistry and toxicology, Faculty of Agriculture, Ain Shams University, for his instructive supervision, valuable help, advice and sincere encouragement throughout the development of this work, in addition For his limitless effort for drafting and critical revision of the manuscript.

I wish to express my sincere appreciation and deepest gratitude to Professor Dr. **Esmat Mohamed Kamel Hussien** Professor of Pesticides chemistry and toxicology, Faculty of Agriculture, Ain Shams University, for her advice, encouragement, and help for facilitating the experimental work.

I am especially grateful to Professor Dr. Mostafa M. Abd El-Sattar Professor of pesticides chemistry and toxicology. Central Agricultural Pesticide Laboratory. For his supervision and unselfish help in so many ways. The opportunity to work in his laboratory at Agricultural over five years with such fine scientist has also been a real pleasure for me.

Finally, no words can express my feelings of gratitude to my parents, wife, brother, sisters and friends, for their continuous help and support throughout the present work.

CONTENTS

List of Contents	Page
I. Introduction	1
II. Review of literature	4
1- Biology and economic importance of peach fruit fly Bo	actrocera
zonata	4
2- Development of resistance to insecticides in Diptera	5
3- Biochemical studies	9
3.1- Superoxide dismutase (SOD, EC1.15.1.1) activity	9
3.2- Glutathione S-transferase (GST, EC 2.5.1.18) activity	y 13
3.3- Glutathione (GSH, EC 6.3.2.3) content	19
3.4- Catalase (CAT, EC 1.11.1.6) activity	21
III. Materials and method	24
1 – Rearing techniques	24
2- Insecticides used	25
2.1- Organophosphorus compounds	25
2.1.1- Fenitrothion (Sumithion 50% EC.)	25
2.1.2- Malathion (57% EC.)	25
2.2- Carbamate	26
2.2.1- Methomyl (90% WP)	26
2.3- Synthetic pyrethroids	26
2.3.1- Fenvalerate (20% EC)	26
3-Bioassay procedures	26
4- Development of resistance strain	27
5- Selection procedure	28
6- Susceptible of insect field populations to certain insection	cides28
7- Biochemical studies	29
7.1- Determination of glutathione S-transferase activity	29
7.2- Determination of reduced glutathione (GSH) level.	30
7.3- Determination of superoxide dismutase (SOD) acti	ivity31
7.4- Determination of catalase (CAT) activity	33

8- Statistical analysis	35
V- Results and discussion	6
1- Development of insecticides resistance in adults of peach from	ıit
fly, Bactrocera zonata (Saunders)	.36
1.1-Development of resistance to fenitrothion	37
1.2- Development of resistance to malathion	.40
1.3-Development of resistance to methomyl	.44
1.4- Development of resistance to fenvalerate	.48
2- Survey of insecticide resistance in field-collected populations	s of
Bactrocera zonata (Saunders) (Diptera: Tephritidae)	53
3-Biochemical studies on resistance Bactrocera zonata strains.	.65
3.1- Superoxide dismutase activity	65
3.2- Glutathione reduced levels	.73
3.3- Glutathione S-transferase activity	.80
3.4- Catalase activity	87
Summary	96
References	104
Arabic Summary	

LIST OF TABLES

List of	Table	Pa	ge
Table	(1): Development of resistance to fenitrothion a	adults	of
	Bactrocera zonata, (Saunders), during s	uccess	ive
	generations exposed insecticide selection LC_{30}	38	}
Table	(2): Development of resistance to malathion a	adults	of
	Bactrocera zonata, (Saunders), during s	uccess	ive
	generations exposed insecticide selection LC ₃	42	,
Table (): Development of resistance to methomyl adults of Bo	actroce	era
	zonata, (Saunders), during successive generations	expos	sed
	insecticide selection LC ₃₀ 46		
Table	(4): Development of resistance to fenvalerate a	adults	of
	Bactrocera zonata, (Saunders), during s	uccess	ive
	generations exposed insecticide selection LC ₃₀		51
Table	(5): Toxicity of tested insecticides to susceptible	strain	of
	Bactrocera zonata adults 24 hrs after treatment		57
Table	(6): Toxicity of tested insecticides to the Gharbia of	•	
	Bactrocera zonata adults 24 hrs after treatment		
Table	(7): Toxicity of tested insecticides to the Giza of	•	
	Bactrocera zonata adults 24 hrs after treatment		
Table	(8): Toxicity of tested insecticides to the Behera of	-	
	Bactrocera zonata adults 24 hrs after treatment		
Table	(9): Specific activity of superoxide dismutase (ur		
	protein) in adult of Bactrocera zonata, exp	-	
	fenitrothion, malathion, methomyl, and fenvalerat		_
	certain generations of selection		
Table	(10): Specific activity of superoxide dismutase (ur		
	protein) in adult of <i>Bactrocera zonata</i> , exp		
	fenitrothion, malathion, methomyl, and fen		
	collected from different governorate		/ I

Table (11): Specific level of glutathione reduced (ug. mg ⁻¹ protein) in
adult of Bactrocera zonata, exposed to fenitrothion,
malathion, methomyl, and fenvalerate, during certain
generations of selection76
Table (12): Specific level of glutathione reduced (ug. mg ⁻¹ protein) in
adult of Bactrocera zonata, exposed to fenitrothion,
malathion, methomyl, and fenvalerate, collected from
different governorate
Table (13): Specific activity of glutathione S-transferase (u mol min ⁻¹
mg ⁻¹ protein) in adult of Bactrocera zonata, exposed to
fenitrothion, malathion, methomyl, and fenvalerate,
during certain generations of selection83
Table (14): Specific activity of glutathione S-transferase (u mol min ⁻¹
mg ⁻¹ protein) in adult of Bactrocera zonata, exposed to
fenitrothion, malathion, methomyl, and fenvalerate,
collected from different governorate
Table (15): Specific activity of catalase (units. mg ⁻¹ protein) in adult
of Bactrocera zonata, exposed to fenitrothion, malathion,
methomyl, and fenvalerate, during certain generations of
selection89
Table (16): Specific activity of catalase (units. mg ⁻¹ protein) in adult
of <i>Bactrocera zonata</i> , exposed to fenitrothion, malathion,
methomyl, and fenvalerate, collected from different
governorate 91

LIST OF FIGURES

List of Figures Page
Fig. (1): Toxicity regression lines of fenitrothion against adults of
Bactrocera zonata by LC30 at successive generations
resistance strain
Fig. (2): Toxicity regression lines of malathion against adults of
Bactrocera zonata by LC ₃₀ at successive generations
resistance strain
Fig. (3): Toxicity regression lines of methomyl against adults of
Bactrocera zonata by LC ₃₀ at successive generations
resistance strain
Fig. (4): Toxicity regression lines of fenvalerate against adults of
Bactrocera zonata by LC ₃₀ at successive generations
resistance strain
Fig. (5): Toxicity lines of tested insecticides to susceptible strain of
Bactrocera zonata adults 24 hrs after treatment58
Fig. (6): Toxicity lines of tested insecticides to Gharbia colony of
Bactrocera zonata adults 24 hrs after treatment60
Fig. (7): Toxicity lines of tested insecticides to Giza colony of
Bactrocera zonata adults 24 hrs after treatment62
Fig. (8): Toxicity lines of tested insecticides to Behera colony of
Bactrocera zonata adults 24 hrs after treatment64
Fig. (9): Specific activity of superoxide dismutase (units. mg ⁻¹ protein)
in adult of Bactrocera zonata, exposed to fenitrothion,
malathion, methomyl, and fenvalerate, during certain
generations of selection
Fig. (10): Specific activity of superoxide dismutase (units. mg ⁻¹
protein) in adult of Bactrocera zonata, exposed to
fenitrothion, malathion, methomyl, and fenvalerate, collected
from different governorates 72

Fig. (11): Specific level of glutathione reduced (ug. mg ⁻¹ protein) in
adult of Bactrocera zonata, exposed to fenitrothion,
malathion, methomyl, and fenvalerate, during certain
generations of selection
Fig. (12): Specific level of glutathione reduced (ug. mg ⁻¹ protein) in
adult of Bactrocera zonata, exposed to fenitrothion,
malathion, methomyl, and fenvalerate, collected from
different governorates79
Fig. (13): Specific activity of glutathione S-transferase (u mol min ⁻¹
mg-1 protein) in adult of Bactrocera zonata, exposed to
fenitrothion, malathion, methomyl, and fenvalerate, during
certain generations of selection84
Fig. (14): Specific activity of glutathione S-transferase (u mol min ⁻¹
mg-1 protein) in adult of Bactrocera zonata, exposed to
fenitrothion, malathion, methomyl, and fenvalerate, collected
from different governorates86
Fig. (15): Specific activity of catalase (units. mg ⁻¹ protein) in adult of
Bactrocera zonata, exposed to fenitrothion, malathion,
methomyl, and fenvalerate, during certain generations of
selection90
Fig. (16): Specific activity of catalase (units. mg ⁻¹ protein) in adult of
Bactrocera zonata, exposed to fenitrothion, malathion,
methomyl, and fenvalerate, collected from different
governorates 92

INTRODUCTION

The family Tephritidae, includes flies usually known as fruit flies, is one of the dipteran families with the largest number of species. As of July 2000, 4352 species (grouped into 481 genera) were recognized worldwide, many of which are important as agricultural pests.

It is a polyphagous species attacking some 40 species of fruits and vegetables (White and Elson-Harris, 1992) and has also been recorded from wild host plants of the families Euphorbiaceae, Lecythidaceae and Rhamnaceae (Syed *et al.*, 1970; Kapoor and Agarwal, 1983).

Fruit flies (Diptera: Tephritidae) are important pests of fruits, vegetables and ornamental plants. The peach fruit fly, *Bactrocera zonata* (Saunders) is one of the most harmful species of Tephritidae. It causes large amounts of damage in Asia (**Butani, 1976; Agarwal** *et al.*, **1999**).

Bactrocera zonata is native to India where it was first recorded in Bengal (Kapoor, 1993). It is present in many countries of tropical Asia: India, Indonesia (Sumatra, Moluccas), Laos, Sri Lanka, Vietnam, Thailand (White and Elson-Harris, 1992), Burma, Nepal, Bangladesh, and probably all of south-east Asia (Kapoor, 1993). The species has been captured in traps in California (Carey and Dowell, 1989).

It has spread to other parts of the world, in particular to several countries in the Near East and to Egypt. In recent years, *B. zonata* has become a widespread pest in Egypt, in addition it has been intercepted in Israel. *B. zonata* is consider a threat to countries in the Near East and North Africa, while a lesser extent to Southern Europe_(El-Minshawy *et al.*, 1999).

Bactrocera zonata is causing crop losses of 25 to 100 percent in peach, apricot, guava and figs. In recent years, it has increased its host range, especially on fruit (**Butani, 1976; Butani and Verma, 1977**).

Insecticide resistance is a major problem in the control of insects; Insect has developed resistance to nearly all insecticide used against it.

Multiple mechanisms seem to be involved in the development of insecticide resistance. Resistance may result from behavioral adaptations, alternation of the target site, increased metabolic detoxification, increased excretion of the parent compound, and/or reduced cuticular penetration (**Oppenoorth**, 1985).

The evolution of insecticide resistance in insects tends to be rapid because selection is strong, populations are large and generation period is short. With the threat of insecticide resistance looming larger, it is absolutely necessary to investigate the factors responsible of this critical phenomenon (**Hemingway** *et al.*, **1993**).

Pesticides beside leading to hyperexcitability of the nervous system, and cause various side effects, e.g. change DNA structure (Griffin and Hill, 1978), may also generate reactive oxygen species (Bagchi et al., 1995). Pesticides and other xenobiotics may increase the level of free radicals (Freeman and Crapo, 1982) and influence (mobilise) an antioxidant defence system (Zikic et al., 1996) in tissues and cells. Animals have evolved antioxidant defense systems, with both enzymatic and nonenzymatic components, to protect from the serious damaging effects of reactive oxygen species (ROS) on cellular macromolecules. Three levels of protection have been considered; (1) prevention of ROS formation, (2) termination of free radical chain reactions using radical scavengers or antioxidants and/or (3) repair of cellular components after damage has occurred (Jacobson et al., 1989; Storz et al., 1989).

Specific enzymes directly detoxify ROS; superoxide dismutase (SOD) catabolizes O_2 whereas catalase (CAT) degrades H_2O_2 (at high and low concentrations of H2O2, respectively). (**Jacobson** *et al.*, 1989; Storz *et al.*, 1989). Antioxidants can soothe neurotoxic effects of insecticides (Bagchi *et al.*, 1993 & 1996, Minakata *et al.*, 1996).

The aim of the present study is to investigate the present toxicological status of the Egyptian field populations (Behira, Gharbia, and Giza governorates) and their susceptibility towards insecticides of different compounds groups (organophosphates, pyrethroids and carbamates). Also throw more light on certain responsible biochemical factors on their susceptibility and/or resistance towards the tested insecticide groups.

Accordingly; the activities of superoxide dismutase (SOD), and catalase (CAT), together with the activity of glutathione S-transferase (GST), and the level of glutathione reduced (GSH), were all investigated.