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ABSTRACT

Design of laterally unsupported steel I-section beams according to ASD
(Allowable Stress Design) and LRFD (Load and Resistance Factor Design)
techniques requires the use of multiple equations. These equations depend on the
section compactness, the laterally unsupported length of the beam, the geometric
properties of the cross section and the yield strength of the steel. Furthermore,
local buckling and lateral torsion-flexure buckling significantly affect the
behaviour of steel I-section beams. The laterally unsupported length of the beam
on the other hand, affects the critical moment initiating lateral flexure-torsion
buckling. According to most codes of practice, three distinct zones are established
for the behaviour of laterally unsupported steel beams; the moment resistance or
the allowable bending stress. These two behaviours are defined by different
equations in each zone in all the codes, which takes lots of effort and time. In this
thesis, a single equation which defines the allowable bending stress for laterally
unsupported steel I-section beams is proposed to cover all these zones. Another
single equation which defines the moment resistance for laterally unsupported
steel I-section beams is suggested to cover all these zones. The proposed
equations results are compared to those obtained using the design provisions of
the ECPSCB-ASD (2001) and the ECP-LRFD (2008). The equation is proposed
to replace the discontinuous definitions currently adopted by the two previously
mentioned codes defining the allowable bending stress and the nominal moment
resistance for laterally unsupported steel I-section beams. Results obtained using
the proposed equations are also compared to those obtained using CAN/CSA-S16
(2007) and AISC-LRFD (2005). The proposed model has been also verified
against experimental results available from literature. The results of the proposed
equations are well-matched with those provided by the design codes of practices
as well as the finite element model results.



CHAPTER 1

INTRODUCTION

The design of laterally unsupported steel I-beams according to ASD
(Allowable Stress Design) and LRFD (Load and Resistance Factor
Design) techniques requires the use of multiple equations which depend
on many geometric and material parameters. Most codes of practice
define three distinct zones with the moment resistance characterized by a
different design equations for each zone. The first and second zones are
affected by elastic and elasto-plastic lateral-torsional buckling,

respectively. The third zone is only governed by steel yielding.

Lateral-torsional buckling is an important phenomenon in the design of
steel I-beams. Most beams used in steel construction have a greater
stiffness about the axis which resists the bending moment than that in the
perpendicular direction. This results-in the possibility of lateral-torsional
buckling which arises from lateral deflection and twisting. The resistance
to this type of buckling depends on the lateral bending and torsional
stiffness of the cross section, bracing type and hence the laterally
unsupported length, arrangement and stiffness, the bending moment
distribution along the length of the beam, the position of load with
respect to the cross section, the material properties, the magnitude and
distribution of residual stresses, the initial twist of the cross section, and
finally the initial bow along the length of the cross section. Lateral-
torsional buckling is a limit state that may often control the design of
steel girders. Design specifications usually provide buckling solution

derived for uniform moment loading and account for moments gradient
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along the unbraced length with a moment gradient factor Cy applied to

these solutions.

On the other hand, local buckling is an important mode of failure for the
I-section steel members. Local buckling is mainly affected by the flange
outstand-to-thickness and the web-to-thickness ratios. These two ratios
define the “compactness” of the steel I-sections. Codes of practice place
limits on these ratios such that the critical stress initiating local buckling
would not be reached before the yield stress is reached at selected

locations.

1.1 Aim of the Research

The objective of this research is to propose a simple design equation for
steel I-beams. The proposed equation shall cover all the three distinct
regions of the beam's behaviour: fully plastic, elasto-plastic lateral
buckling and elastic lateral buckling. The proposed equation is verified
against results of an extensive parametric study performed using a

numerical model which is based on the finite element technique.

The research started by collecting a data-base encompassing the results
of the experimental investigations performed on beams, and related to the
topic of this research. The results of this collected data-base are then used
to verify a proposed nonlinear finite element model. The model can
predict the behaviour and failure of steel I-beams including plasticity,
local buckling, lateral buckling, etc. The numerical model, thus, accounts
for: material and geometric nonlinearities, instability and post-buckling

behaviour. The model is used to perform a wide-range parametric study



covering most of the related parameters affecting the behaviour and
failure of steel I-section beams, I-section cantilevers, mono-symmetric I-
section beams and I-section columns. The results of the proposed

equation are verified against the finite element model results and codes.

The outcome of this research is presented in a from of two simple
equations for steel I-section beams: one for the allowable stress design
(ASD) concept and the second for the load and resistance factor design
(LRFD) concept. Another single equation is introduced to extend the
beam equation to include columns as well as the beam-column members

for design with the LRFD concept.

1.2 Outlines of the Thesis

This thesis is divided into seven chapters. Chapter 1 introduces the
general description of the current complexity related to beam design

together with the main aim of the research and the summary of the thesis.

Chapter 2 presents a literature review of the previous work in the field of
lateral-torsional buckling of steel I-section beams. The method of
analysis and some of the previously performed experimental work and

researches in the same field are also outlined.

Chapter 3 presents a verification analysis of the equation proposed for the
design of steel I-section beams based on the LRFD technique versus
AISC-LRFD (2005), CAN/CSA-S16 (2007) and ECP-LRFD (2008)
specifications. Modification in the proposed equation factor (n) is

presented to suit every case of the previously mentioned codes of



practice. The proposed equation for design of steel beams based on the
ASD technique is also verified versus ECPSCB-ASD (2001). All cases of
the verification included two types of steel grade: 24/36 & 36/52 with
various sizes of the cross section and wide range of the unsupported
lengths. The verification was performed in this chapter for a simply

supported beam.

In Chapter 4, a description of the finite element model is presented. The
analytical technique used to obtain the solution of the problem is
explained. Details of the finite element model are described. Verification
analysis is performed for the numerical model using previous
experimental work to check the validity of the finite element model and
to investigate the accuracy of the adopted analytical technique. The
developed model is then used to perform a wide range parametric study
for steel I-section beams where results of the proposed equations are
compared to results obtained numerically. The analysis at this stage is

only performed for simply supported beams.

Chapter 5 introduces an extension of the work of Chapters 3 and 4 to
cover beams with other configurations and boundary conditions. This
include I-section cantilever subjected to an end concentrated load
(Cy=1.67), and a distributed load (Cy=2.3). Another proposed

configuration is for mono-symmetric I-section steel beams.

Chapter 6 presents a proposal to extend the beam equation to beam-
columns. Finally, a summary of the thesis and its main conclusions are
introduced in Chapter 7. Proposals for further research along the same

line are also presented.



CHAPTER 2

LITERATURE REVIEW

Local buckling and lateral-torsional buckling significantly affect the
behaviour of steel I-section beams subject to flexure. The design of
laterally unsupported steel I-section beams, according to ASD and LRFD
specifications requires the use of multiple equations which depend on the
section compactness, the laterally unsupported length of the beam, the
geometric properties of the cross section and the yield strength of the
steel. Flange outstand-to-thickness and web height-to-thickness ratios
define the I-section compactness. The laterally unsupported length of the
beam affects the critical moment initiating lateral-torsional buckling.
Most codes define three distinct zones with the moment resistance
defined by a different equation in each zone. The first and second zones
are affected by elastic and elasto-plastic lateral-torsional buckling,
respectively. The third zone is governed by steel yielding. Several
researches studied the phenomena of lateral-torsional buckling of steel I-
section beams and the moment capacity of such beams. A brief
description for the work done by different researches in the same field of

interest of this thesis is included in this chapter.

2.1 Lateral-Torsional Buckling

Lateral-torsional buckling represents an important aspect in the design of

steel beams. Most beams that are used in steel construction have greater

stiffness about the axis which resists the bending moment than in the



perpendicular direction. This results in the possibility of lateral-torsional
buckling. Lateral-torsional buckling is the result of lateral deflection and
twisting. The resistance to this type of buckling is dependent on the
lateral bending stiffness of the cross section, the torsional stiffness of the
cross section, the type of bracing (lateral or torsional), the position of the
bracing along the length of the beam, the position of the bracing on the
cross section, the stiffness of the bracing, the bending moment
distribution along the length of the beam, the position of the load on the
cross section, the material properties, the magnitude and distribution of
residual stresses, the initial twist of the cross section, and finally the
initial bow along the length of the cross section. To prevent lateral-
torsional buckling, beams are braced against twisting of the cross section.
Two types of bracing are commonly used: (1) torsional bracing, which
resists twisting of the cross section directly; (2) lateral bracing, which
resists twisting of the cross section by limiting the lateral deflection at a
point away from the level of virtual rotation. In practice, it is common for
beams to be braced laterally at the top flange by the floor or roof system.
Figure 2.1 indicates some types of definite lateral support, Salmon and
Johnson (1996). Previous studies have shown that, for cantilever beams,
torsional bracing is more effective than lateral bracing, assuming that
both types have infinite stiffness, Nethercot and Al-Shankyty (1979);
Kitipornchai and Richter (1983).

The strength or resistance of a beam in flexure is limited by some
combination of local and overall buckling resistances. Figure 2.2 shows
the general behavior of a wide flange beam, Yura et al. (1978). Basically,
the behavior of the beam is divided in three response regimes: elastic,

inelastic, and plastic ranges. In the elastic range, elastic buckling controls



the behavior. In the inelastic range, some or all of the cross-section is
yielded but only a small amount of inelastic deformations is available
prior to failure. In the plastic range, the cross-section reaches the plastic

moment M , and maintains this load level as the member tends to
p

undergo large plastic deformations allowing for moment redistribution,

Aktas (2004).

Pratyoosh and Blandford (1996) observed the lateral-torsional buckling
of non-prismatic I-beams. They developed a finite-element model to
analyze lateral-torsional buckling behavior of the non-prismatic simple or
continuous beams with linear or quadratic tapered webs. The influence of
warping deformations of the section and location of the member's loads
are included in the formulation of the finite-element model. A parametric
study on the lateral-torsional buckling strength is carried out for different
forms of degree of taper, loading and support conditions for single-span
and two-span continuous beams. They concluded that the buckling
capacity increases significantly with the increase of linear taper for
simple-span beams subjected to a uniform load applied at the section
centroid. However, the maximum buckling loads are obtained if
quadratic taper is provided. Linear taper for fixed-fixed supported beams
leads to higher buckling capacities for very larger tapers and buckling
loads can be increased significantly by providing quadratic taper. Their
study also showed that the buckling loads for the two-span beams can be
increased significantly when the loads applied on the second span is
almost 50-60% greater than that applied on the first span. They recorded
obvious increase in the buckling load by quadratically tapering the web
depth towards the interior support or by tapering the flange thickness
towards this support.



Earls (1998) conducted an experimental investigation to predict the
ductility of wide flange beams made from high performance steel
(HSLAS8O) subjected to moment loading. The loaded beams displayed
inelastic modes of failure which do not lend themselves to a notional de-
coupling of so-called local buckling and lateral-torsional buckling
phenomena. Rather, the inelastic modes of failure of the HSLASO tested
beams displayed two distinct inelastic buckling patterns at failure, both of
which exhibit localized and global buckling components. The structural
ductility of beams is very much dependent upon which of the two mode
shapes govern at failure. Cross-sectional proportions, bracing
configuration, and geometric imperfections all play a role in influencing
which mode governs in the beam at failure. He concluded that currently
cross-sectional compactness and bracing for structural ductility in the

AISC-LRFD (2005) may not be applicable for HSLA80 beam:s.

In the current AISC code, members are classified as, non-compact and
compact as a means for characterizing their strength and deformation
capacity. For sections permitted in plastic analysis, the AISC (2005)
requires a compact section. The specification defines a compact section
as one that can develop a fully plastic stress distribution while exhibiting
sufficient plastic hinge rotation capacity, prior to the onset of local
buckling, to accommodate moment redistribution in the structural

system.

Vila et al. (2003) studied the effect of residual stresses on the lateral-
torsional buckling of steel I-beams at elevated temperature. A numerical
investigation of the lateral-torsional buckling of steel I-beams subjected

to a temperature variation from room temperature up to 700°C, with the



aim of assessing the effects of the residual stresses in this mechanism of
failure. For this purpose, a geometrically and materially non-linear finite
element model has been used to determine the lateral-torsional resistance
of steel I-beams at elevated temperatures. They concluded that Young’s
modulus decreases faster than the yield strength when the temperature
increases. This conclusion along with the fact that the stress—strain
relationship at elevated temperatures is not the same as that at room
temperature, produce a modification to the lateral-torsional buckling
curve at elevated temperatures. To overcome this problem, a new beam
design curve has been proposed. They also concluded that the buckling
resistance of the beams is less sensitive to the residual stresses when the
temperature increases. This is probably a result of the smaller difference
between the yield stress of steel and the level of residual stresses that is

characteristic of elevated temperatures.

Karl et al. (2005) reviewed the performance and accuracy of the web
compactness limits employed by AISC (2001) and AASHTO (2004)
specifications. In order to evaluate the performance of the above web
compactness limits, a significant number of finite element analyses were
conducted with the goal of determining if girders satisfying the above
compactness limits would achieve their intended moment capacity M,,.
They concluded that AISC (2001) and AASHTO (2004) compactness
limits do not adequately account for the behavior of mono-symmetric
sections having geometries typical of that used in contemporary bridge
construction. However, AASHTO (2004) web compactness limit
overcomes these limitations, ensuring that the plastic moment is

developed throughout a range of geometric ratios investigated.



2.2 Critical Moment Initiating Lateral-Torsional Buckling

Beams loaded about the strong axis may buckle in lateral-torsional
buckling mode. The well-known analytically derived equation for the
critical elastic buckling moment M, of a simply supported beam, loaded
by a moment which is constant along the span was published by

Timoshenko and Gere (1961):

2
T nE
M, :E\/EIYGJ-{T} Iy C, 2.1)

Where E is Young’s modulus (Modulus of elasticity), I, is the moment of
inertia about the weak axis, G is the shear modulus, J is the torsional

constant, L is the beam span and C,, is the warping constant.

Equation 2.1 shows that the moment of inertia about the weak axis, the
torsional constant and the warping constant are the parameters that affect
the resistance to buckling, together with the lateral unsupported length of
the beam. I-sections are often used as beams because of the favorable
ratio between resistance and weight. A disadvantage of I-sections,
however, is that they have a relatively low critical elastic buckling load
because of the relatively low torsional constant, the low warping constant
and the small ratio between I, and I, where I is the second moment of

inertia about the strong axis.

The AISC LRFD specification (AISC 1999) uses equation 2.1 modified
by a factor Cy, which accounts for non-uniform moments along the length

of the beam. For inelastic buckling, the capacity is interpolated linearly
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between the elastic buckling moment and the plastic capacity of the cross
section. Residual stresses are accounted for explicitly by limiting the
elastic stress to the yield stress minus the residual stress. The equation for

the elastic buckling moment is

2
e nE
Mcr = Cb E\/E IyG J+|:T} Iy Cw (22)

To obtain the design capacity, M, is multiplied by a reduction factor @

to account for design inaccuracies.

Helwing et al. (1997) used the finite element buckling analysis to
examine the lateral-torsional buckling of singly symmetrical I-beams.
Mid-span point load and uniform distributed load were investigated.
They concluded that for single-curvature bending, traditional values for
moment gradient factors Cy can be used to estimate the buckling capacity

of singly symmetric girders with (0.1 < p < 0.9) and where
p=ILc/1 (2.3)

Iy is the moment of inertia of the compression flange and I, is the weak-
axis moment of inertia of the cross section. The finite element results of
Helwing et al. (1997) demonstrated that the height of the load application
on the cross section has a significant effect on the buckling capacity. If
the load is not applied at the mid-height of the cross section, they
recommended that the moment gradient factors Cy has to be modified

with a modification factor.
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Park and Michael (2003) studied the lateral-torsional buckling of stepped
beams. They used the results of the finite-element buckling analysis for
stepped beams under uniform moment to develop new proposed design
equations that account for the change in the cross section of stepped
beams. Traditional moment gradient factors for prismatic beams were
reviewed and found to be sufficiently accurate for some stepped beam
cases. Comparisons were made between the proposed equations and
finite element model results for doubly and singly stepped beam spans of
existing highway bridges. The comparisons indicated that proposed
equations produced conservative estimates of the lateral-torsional

buckling resistance for these cases.

Johan et al. (2004) illustrated the relation between the critical elastic
buckling load and the resistance of a beam (Figure 2.3). The horizontal
axis in this figure represents the lateral deflection of the cross-section at
mid-span of a simply supported beam loaded by a concentrated load
applied at mid-span. They stated that for beams with a much higher
critical elastic buckling load, buckling does not significantly influence
the beam resistance. The resistance of such beams is dominated by the
plastic capacity, whereas for beams with a much lower critical elastic
buckling load, the beam resistance is dominated by buckling. In codes
such as the Euro code 1993, the influence of the critical elastic buckling
load on the beam resistance is expressed as a function of the relative

slenderness At as shown in Equation 2.4:-

Az = . (2.4)
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They also illustrated in Figure 2.4 the ratio between the beam resistance
and the plastic capacity (yLr) as a function of the relative slenderness
(ALr). For a beam with large slenderness, the critical elastic buckling load
(solid black line) dominates the resistance, while the plastic capacity
(grey line) dominates the resistance for stocky beams. The influence of
initial imperfections is taken into account by the use of a buckling curve.
In The Euro code 1993, buckling curve ‘a’ (dashed line) is used for the
design resistance of rolled sections. This buckling curve is based on the
results of many tests. As shown, the influence of initial geometric
imperfections and residual stresses on the resistance is largest when the
critical elastic buckling load is equal to the plastic capacity (at a relative

slenderness equal to 1).

Sayed-Ahmed and Loov (2005) and Sayed-Ahmed (2005) proposed a
single equation which defines the allowable bending stress for laterally
unsupported steel I-section beams to cover the three zones of the steel
beam behaviour (plastic, elasto-plastic and elastic). The equation was
proposed to replace the discontinuous definitions currently adopted by
the codes of Practice. The proposed equation results were compared to

those obtained using the design different codes of practice provisions.

lopez et al. (2006) suggested a general expression for the moment
gradient factor for the lateral-torsional buckling of steel I-section beams
applicable to any moment distribution. Modern steel works design codes
provide closed form expressions to compute the moment gradient factor
for any bending moment distribution, but changes in the moment factor
due to end support restrictions are not considered. They used the finite

difference approach and provided new results for the moment gradient
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