STUDIES ON SOLUBILIZATION AND FRTILIZATION BY PHOSPHATE ORES AND BEHAVIOR OF THEIR ASSOCIATED ELEMENTS IN SOME EGYPTIAN SOILS

By

RANIA MOHAMED ABDEL- HAKAM MAHDY

B.Sc. Agric. Sc.(Soil Science), Ain Shams University, 1999 M.Sc. Agric. Sc.(Soil Science), Ain Shams University, 2004

A thesis submitted for partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON SOLUBILIZATION AND FRTILIZATION BY PHOSPHATE ORES AND BEHAVIOR OF THEIR ASSOCIATED ELEMENTS IN SOME EGYPTIAN SOILS

By

RANIA MOHAMED ABDEL- HAKAM MAHDY

B.Sc. Agric. Sc.(Soil Science), Ain Shams University, 1999 M.Sc. Agric. Sc.(Soil Science), Ain Shams University, 2004

This thesis for Ph.D. degree has been approved by:

Dr.	Hasan Hamza Abbas Prof. of Soil Science, Faculty of Agriculture, Benha University.
Dr.	Adel Sayed El- Leboudi
Dr.	Abdel Samad Salem Ismail Hegazy
Dr.	Mohamed Ahmed Mahmoud Mostafa

Date of Examination: 31 / 5 / 2011

STUDIES ON SOLUBILIZATION AND FRTILIZATION BY PHOSPHATE ORES AND BEHAVIOR OF THEIR ASSOCIATED ELEMENTS IN SOME EGYPTIAN SOILS

By

RANIA MOHAMED ABDEL- HAKAM MAHDY

B.Sc. Agric. Sc. (Soil Science), Ain Shams University, 1999 M.Sc. Agric. Sc. (Soil Science), Ain Shams University, 2004

Under the supervision of:

Dr. Mohamed Ahmed Mahmoud Mostafa

Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. Abdel Samad Salem Ismail Hegazy

Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. Fadia Youssif Ahmed

Prof. Emeritus of Geochemistry, Production Sector, Nuclear Materials Authority.

دراسات عن الذوبان والتسميد بخامات الفوسفات و سلوك العناصر المصاحبة لها في بعض الأراضي المصرية

رسالة مقدمة من

رانيا محمد عبد الحكم مهدي بكالوريوس علوم زراعية (أراضي)، جامعة عين شمس، 1999 ماجستير علوم زراعية (أراضي)، جامعة عين شمس، 2004

للحصول على درجة دكتور فلسفه في العلوم الزراعية (أراضي)

قسم الأراضي كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

دراسات عن الذوبان والتسميد بخامات الفوسفات وسلوك العناصر المصاحبة لها في بعض الأراضي المصرية

رسالة مقدمة من

رانيا محمد عبد الحكم مهدي

بكالوريوس علوم زراعية (أراضي)، جامعة عين شمس،1999 ماجستير علوم زراعية (أراضي)، جامعة عين شمس،2004

للحصول على درجة دكتور فلسفه في العلوم الزراعية (أراضى)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:
. حسن حمزة عباس
أستاذ الأراضي ، كلية الزراعة ، جامعة بنها
د. عادل السيد اللبودي
 عادل السيد اللبودي أستاذ الأراضي غير المتفرغ ، كلية الزراعة ، جامعة عين شمس
د. عبد الصمد سالم اسماعيل حجازي
د. عبد الصمد سالم اسماعيل حجازي
 عدم أحمد محمود مصطفى أستاذ الأراضي المتفرغ، كلية الزراعة ، جامعة عين شمس
أستاذ الأراضي المتفرغ، كلية الزراعة ، جامعة عين شمس

تاريخ المناقشة: 3/31/5/2011

رسالة دكتوراة

اسم الطالبة : رانيا محمد عبد الحكم مهدي

عنوان الرسالة : دراسات عن الدوبان والتسميد بخامات الفوسفات

وسُلوك العناصر المصاحبة لها في بعض الأراضي

المصرية

اسم الدرجة : دكتورفلسفه في العلوم الزراعية (أراضي)

لجنة الإشراف:

د. محمد أحمد مصطفى

أستاذ الأراضي المتفرّغ، قسم الأراضي، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. عبد الصمد سالم إسماعيل

أستاذ الأراضي المتفرغ، قسم الأراضي ، كلية الزراعة ، جامعة عين شمس

د. فادية يوسف أحمد

أستاذ الجيوكيمياء المتفرغ ، قطاع الإنتاج ، هيئة المواد النووية

تاريخ التسجيل: 14 /2 / 2005

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ

2011/5/31

موافقة مجلس الكلية موافقة مجلس الجامعة

2011/ / 2011/ /

ABSTRACT

Rania Mohamed Abdel Hakam Mahdy: Studies on Solubilization and Fertilization by Phosphate Ores and Behavior of Their Associated Elements in Some Egyptian Soils. Unpublished Ph.D Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2011

Biological solubilization of rock phosphate is more friendly environmental than acidulation. There is a need therefore to develop a microbial process that will make phosphorous available for plant use with minimum pollution to the environment. Three natural phosphate rock samples were collected from Sebaiya (Nile Valley), Safaga (Red Sea) and Abu Tartur (Western Desert) together with tri-Ca phosphate as industrial fertilizer for comparison and to study the effect of phosphate rock application rates, type of rock phosphate deposits, the time of incubation (2,4 and 6weeks) and different soils on phosphorus rock solubilization. Also, the study included counting, isolation and identification of two phosphate dissolving bacteria. The obtained results indicated that there does exist a reasonable potentiality to use the rock phosphates directly as fertilizers instead of the industrial ones by applying 2g of the phosphate rock /1kg soil which represents two tons/Fadden. To improve the phosphorous solubility, three types of amendments were applied namely elemental sulphur, compost and orange waste. The rate of addition and the incubation period then the potentiality of performing such amendments were investigated. A trial to propose a modified diagram concerning the factors influencing the phosphorous solubility and/or availability was discussed. The study of organic amendments such as composts, manures and plant wastes proved to be effective on wheat cultivation under greenhouse conditions.

An agricultural pot experiment using wheat plant (Sakha-63) in both clay and calcareous soils and applying the phosphate rocks Abu Tartur oxidized; Red Sea and El Sebaiya were conducted. The shoot dry weight of grown plants was correlated with its phosphorous, uranium and rare earth elements concentration, along with uptake and utilization efficiency of mycorrhizal infection percent.

Finally, the present study indicated that a reasonable possibility could be existed for the application of the rock phosphates directly as fertilizers instead of the industrial ones under certain conditions. Moreover, the application of phosphate rock natural fertilizers combined with amendments of organic manures may improve the phosphorous solubilization and availability. In fact, this application is more friendly environmental with respect to the environmental concerns and impacts.

Key Words: Phosphate rock, Solubilization, Fertilization, Factors, Bacteria, Mycrrohiza, Uranium, Rare earth elements.

CONTENTS

	Title	Page
	LIST OF TABLES	V
	LIST OF FIGURES	viii
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
2.1	General statement	4
2.2	Phosphate resources in Egypt	6
2.3	Phosphate rocks as principle uranium resource in	
	Egypt	9
2.4	Industrialization of phosphate rocks	12
2.5	Biological solubilization of phosphate rocks	14
2.5.1	Biological solubilization of phosphate rock by fungi	19
2.5.2	Biological solubilization of phosphate rock by	
	bacteria	22
2.5.2.1	Biological solubilization of phosphate rock by	
	Thiobacillus bacteria	22
2.5.2.2	Biological solubilization of phosphate rock by	
	phosphate dissolving bacteria	23
2.5.2.3	Biological solubilization of phosphate rock by	
	Acetinomycetes	25
2.6	Improvement of phosphate rocks biological	
	solubilization by certain amendments	25
2.6.1	Elemental sulphur addition	26
2.6.2	Compost addition.	28
2.6.3	Addition of different manure types (animal, chicken,	
	farmyard, and fruits wastes	31
2.7	Factors influencing the phosphate rock solubilization	2.4
	and availability to plant	31
2.8	Solubilization of phosphate rock associated elements	

	by microorganisms
2.9	Availability of phosphorous in agriculture
3	MATERIALS AND METHODS
3.1	Materials
3.1.1	Soil samples
3.1.2	Soil amendments
3.1.3	Phosphate rock samples
3.1.4	Growth and detection media for microbiological
	study
3.1.5	Experimental Work
3.1.5.1	Factors influencing phosphorous solubility
3.1.5.1.1	Solubility performance of phosphate rock on different
	Egyptian soils
3.1.5.1.2.	Effect of phosphate types, rates, and incubation
	periods on p-solubilization in different soils
3.1.5.1.3	Effect of organic amendments and sulphur types,
	rates, and incubation periods on P-solubilization in
	different soils
3.1.5.2	
3.1.3.2	Effect of phosphate rock types, amendments and
	microorganisms on wheat plant grown on different
	soils
3.2	Methods
3.2.1	Soil analysis
3.2.2	Plant analysis
3.2.3	Phosphate rock analysis
3.2.4	Utilization efficiency calculations
3.2.5	Associated elements analysis
3.2.6	Microbiological experimental studies
3.2.6.1	Isolation of phosphate dissolving bacteria
3.2.6.2	Determination the solubilization index

3.2.6.3	Estimation the ability of bacteria to solubilize insoluble phosphate in liquid culture	57
3.2.6.4	Studying the effect of the phosphate rock type on phosphate solubilization in vitro	57
3.2.6.5	Evaluation of the role of phosphorus solubilizing bacteria and mycorrhiza as bio-fertilizers in presence of phosphate rock types	58
3.2.6.6	Identification of bacterial isolates solubilizing rock phosphate	58
4	RESULTS AND DISSECTIONS	60
4.1	Chemical composition of the used phosphate rock Samples	60
4.2	Factors influencing phosphorous solubility	60
4.2.1	Phosphate rock type	62
4.2.2	Phosphate rock rates	65
4.2.3	Incubation period	65
4.2.4	Soil type	68
4.2.5	Application of elemental sulphur	76
4.2.6	Application of compost	82
4.2.7	Application of orange waste	83
4.2.8	Associated elements through the phosphate rock solubilization	83
4.2.9	Proposal of factors influencing phosphate rock solubilization in some soils of Egypt	91
4.3	Evaluation of phosphorous solubilization from some	
	phosphate rocks in different soils	94
4.3.1	Microbiological measurements	94
4.3.2	Estimating the ability of the collected isolates of	
	phosphate dissolving bacteria for mobilizing phosphorus.	97
4.3.3	Phosphate solubilization from insoluble phosphate in	- '

	liquid culture	97
4.3.4	Effect of the type of phosphate rock on phosphate	
	mobilization	103
4.3.5	Identification of the most effective isolates	105
4.4	Effect of phosphate rock types, amendments and	
	microorganisms on wheat plant grown on different	
	soils (Pot Experiment)	105
4.4.1	Clay soil	105
4.4.2	Calcareous soil	118
4.4.3	Environmental impacts of phosphate rocks utilization	
	as natural fertilizers	129
5	SUMMARY AND CONCLUSIONS	133
6	REFERENCES	142
	ARABIC SUMMARY	

LIST OF FIGURES

Figure		Pag
1	Distribution of phosphate deposits in Egypt	8
2	Flow diagram representing uranium resources in	
	Egypt	11
3	Location map of uranium occurrences in Egypt	12
4	Soil factors influencing phosphorous availability	33
5	Flow diagram explaining the materials and methods	
	applied in the present study	47
6	Effect of phosphate rock type on phosphorous	
	solubilization efficiency in the studied soils	64
7	Effect of applied phosphate rock addition rates on	
	phosphorous solubilization efficiency of the studied	
	soils	67
8	Effect of rate of P applied and incubation period	
	(weeks) on phosphorous solubilization efficiency of	
	the different phosphate rock samples in clay soil	70
9	Effect of rate of P applied and incubation period	
	(weeks) on phosphorous solubilization efficiency of	
	the different phosphate rock samples in calcareous	
	soil	71
10	Effect of rate of P applied and incubation period	
	(weeks) on phosphorous solubilization efficiency of	
	the different phosphate rock samples in sandy soil	72
11	Effect of soil type on phosphorous solubilization	
	efficiency in the studied soils	74
12	Effect of sulphur addition rates on phosphorous	
	solubilization efficiency in the clay soil	79
13	Effect of sulphur addition rates on phosphorous	
	solubilization efficiency in the calcareous soil	8(
14	Effect of sulphur addition rates on phosphorous	
	solubilization efficiency in the sandy soil	81

15	Effect of compost addition rates on phosphorous	
	solubilization efficiency in the clay soil	8
16	Effect of compost addition rates on phosphorous	
	solubilization efficiency in the calcareous soil	8
17	Effect of orange waste addition rates on phosphorous	
	solubilization efficiency in the clay soil	8
18	Effect of orange waste addition rates on phosphorous	
	solubilization efficiency in the calcareous soil	8
19	Effect of orange waste addition rates on phosphorous	
	solubilization efficiency in the sandy soil	9
20	Associated elements (uranium dissolution) with	
	different phosphate rocks in the clay soil	9
21	Associated elements (REEs dissolution) in the	
	studied soils	9
22	Proposal diagram for the factors influencing the	
	phosphate rock solubilization	9
23	Densities of (a) total bacteria, (b) phosphate	
	dissolving bacteria and (c) soluble phosphorus P	
	expressed as P ₂ O ₅ % in the clay soil amended with	
	four types of phosphate rock and tri calcium	
	phosphate during 6 weeks	9
24	Densities of (a) total bacteria, (b) phosphate	
	dissolving bacteria and (c) soluble phosphorus P	
	expressed as P ₂ O ₅ % in the calcareous soil amended	
	with four types of phosphate rock and tri-calcium	
	phosphate during 6 weeks	9
25	Densities of (a) total bacteria, (b) phosphate	
	dissolving bacteria and (c) soluble phosphorus P	
	expressed as $P_2O_5\%$ in the sandy soil amended with	
	four types of phosphate rock and tri-calcium	
	phosphate during 6 weeks	10
	phosphate dum 5 v vecks	Τ,

Effect of Red Sea PR application in combination	
with compost or chicken manure on shoot dry	
weight, concentrations, uptake and its utilization	
efficiency for P, U and REE by wheat plants	
inculcated with microorganisms in clay soil	111
Effect of Abu Tartur oxi. PR application in	
combination with compost or chicken manure on	
shoot dry weight, concentrations, uptake and its	
utilization efficiency for P, U and REE by wheat	
plants inculcated with microorganisms in clay soil	114
Effect of Abu Tartur oxi application in combination	
-	
grown on calcareous soil and it's P, U and REE	
concentrations, total uptake and utilization efficiency.	123
-	
• • • •	
-	
-	
	127
	with compost or chicken manure on shoot dry weight, concentrations, uptake and its utilization efficiency for P, U and REE by wheat plants inculcated with microorganisms in clay soil Effect of Abu Tartur oxi. PR application in combination with compost or chicken manure on shoot dry weight, concentrations, uptake and its utilization efficiency for P, U and REE by wheat plants inculcated with microorganisms in clay soil Effect of Abu Tartur oxi application in combination with compost or chicken manure on shoot dry weight of wheat plant inculcated with microorganisms