

Ain shams university Faculty of Medicine Department of Anesthesia and Intensive care and Pain Management

COMPARATIVE STUDY BETWEEN MULTIMODAL PERIOPERATIVE ANALGESIA AND THORACIC EPIDURAL ANALGESIA AFTER OPEN BARIATRIC SURGERY IN MORBIDLY OBESE PATIENTS

Thesis submitted for partial fulfillment of M.D. degree in anesthesiology

Presented by:

AKRAM MOHAMED MOHAMED AMER

М.В.В.СН.- M.Sc in Anesthesia

Supervised by:

Professor DR. / SOHAIR ABBAS MOHAMED SADDEK

Professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

Professor DR. / AZZA MOHAMED SHAFIK ABD EL-MAGID

Professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

DR. / AHMED NAGAH EL-SHAER

Assistant professor of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

DR./MAYAR HASSAN EL-SERSI

Lecturer of Anesthesia and Intensive care Faculty of Medicine –Ain shams university

> Ain shams university Faculty of Medicine 2011

بسم الله الرحمن الرحيم

إنك أنت العليم المكيم، إنك أنت العليم المكيم،

ددق الله العظيم

(البقرة : ٣٢)

ACKNOWLEDGEMENTS

THANKS ARE ALL TO GOD, FOR BLESSING ME THIS WORK UNTIL IT REACHED ITS END, AS A LITTLE PART OF HIS GENEROUS HELP THROUGHOUT MY ENTIRE LIFE.

I WOULD LIKE TO EXPRESS MY DEEPEST GRATITUDE TO PROF. DR. SOHAIR ABBAS SADDEK, PROFESSOR OF ANESTHESIA AND INTENSIVE CARE, FACULTY OF MEDICINE, AIN SHAMS UNIVERSITY, FOR HER SUPPORT, GUIDANCE AND ENCOURAGEMENT.

It has been an honour working under the supervision of **Prof. Dr. Azza Mohamed Shafik, P**rofessor of **A**nesthesia and Intensive **C**are, **F**aculty of **M**edicine, **A**in **S**hams **U**niversity, who helped me in every way she could.

I'M GREATLY INDEBTED TO ASSISTANT PROF DR. AHMAD NAGAH EL-SHAER, ASSISTANT PROFESSOR OF ANESTHESIA AND INTENSIVE CARE, FACULTY OF MEDICINE, AIN SHAMS UNIVERSITY, WHO PROVIDED ME WITH INTELLECTUAL AND TECHNICAL SUPPORT FROM THE VERY BEGINNING OF THIS WORK.

I'M GREATLY THANKFUL TO **DR. MAYAR HASSAN EL-SERSI, L**ECTURER OF **A**NESTHESIA AND **I**NTENSIVE CARE, **F**ACULTY OF **M**EDICINE, **A**IN **S**HAMS **U**NIVERSITY, FOR GREAT HELP AND COOPERATION DURING THE WHOLE WORK.

AKRAM AMER

CONTENTS

Acknowledgements
• List of tablesII
List of figuresV
• List of abbreviationsV
• INTRODUCTION1
• AIM OF THE WORK3
• REVIEW OF LITERATURE
OBESITY4
BARIATRIC SURGERY32
ANESTHETIC CONSIDERATIONS FOR BARIATRIC
SURGEY44
• PATIENTS AND METHODS69
• RESULTS77
• DISCUSSION99
• SUMMARY113
• REFERENCES115
Arabic summary

LIST OF TABLES

No	Table	Page
Table (1)	Classification of Obesity and Levels of Risk Associated with Increasing Body Mass Index	6
Table (2)	Waist Circumference and Risk	6
Table (3)	Features Associated with Metabolic Syndrome	9
Table (4)	Clinical Criteria for Diagnosing Metabolic Syndrome	10
Table (5)	Systemic Consequences of Obesity	13
Table (6)	Severity of OSA according to AHI	18
Table (7)	Medication Dosing in Obesity	31
Table (8)	Key Issues in the Management of Obese Patients Requiring Attention Preoperatively	44
Table (9)	Key Issues in the Management of Obese Patients Requiring Attention from Anesthetic Induction to Emergence	49
Table (10)	Demographic and Operative Data	78
Table (11)	Comparison between the Three Groups as Regard the Visual Analogue Score (VAS)	80
Table (12)	Comparison between the Three Groups as Regard the Heart Rate Changes	82
Table (13)	Comparison between the Three Groups as Regard Changes in Mean Arterial Blood Pressure (MAP)	84
Table (14)	Comparison between the Three Groups as Regard Changes in Oxygen Saturation (SPO2%)	86
Table (15)	Comparison between the Three Groups as Regard Changes in Arterial Oxygen Tension (PaO2)	88
Table (16)	Comparison between the Three Groups as Regard Changes in Arterial Carbon Dioxide Tension (PaCO2)	90
Table (17)	Comparison between the Three Groups as Regard Changes in Serum Cortisol Level	92
Table (18)	Comparison between the Three Groups as Regard Changes in Blood Glucose Level	94
Table (19)	Comparison between the Three Groups as Regard Analgesia Related Side Effects	95

LIST OF TABLES (CONT...)

Table (20)	Comparison between the Three Groups as regard the Time to Mobilization and Time to Return of Gastrointestinal Motility	97
Table (21)	Comparison between Group A and Group C as Regard Postoperative Morphine Consumption	98

LIST OF FIGURES

No.	Figure	Page
Figure (1)	Typical Gynecoid Fat Distribution	8
Figure (2)	Typical Android Fat Distribution	8
Figure (3)	Schematic Representation of the Effects of Severe Obesity on Functional Residual Capacity	15
Figure (4)	Obesity Induced Cardiomyopathy	24
Figure (5)	Bariatric Surgical Procedures	37
Figure (6)	Vertical banded gastroplasty (VBG)	39
Figure (7)	The Correct Position for Direct Laryngoscopy in a Morbid Obese Patient	51
Figure (8)	Visual Analogue Scale (VAS)	74
Figure (9)	Comparison between the Three Groups as Regard the VAS	80
Figure (10)	Heart Rate Changes within the Three Groups	83
Figure (11)	Mean Arterial Blood Pressure Changes Within the Three Groups	85
Figure (12)	Comparison between the Three Groups as Regard Changes in Oxygen Saturation (SPO2%)	87
Figure (13)	Comparison between the Three Groups as Regard Changes in Arterial Oxygen Tension (PaO2)	89
Figure (14)	Comparison between the Three Groups as Regard Changes in Arterial Carbon Dioxide Tension (PaCO2)	91
Figure (15)	Serum Cortisol Level Changes within the three Groups	93
Figure (16)	Comparison between the Three Groups as Regard Changes in Blood Glucose Level	94
Figure (17)	Comparison between the Three Groups as Regard Analgesia Related Side Effects	96
Figure (18)	Comparison between the Three Groups as Regard the Time to Mobilization and Time to Return of Gastrointestinal Motility	97
Figure (19)	Comparison between the Groups A and Group C as Regard Postoperative Morphine Consumption	98

LIST OF ABBREVIATIONS

Abbreviation	Meaning
ABG	Arterial blood gases
AGB	Adjustable gastric banding
AHI	Apnea/hypopnea index
APGARS	Acute post-gastric reduction surgery
ApoB	Apolipoprotein B
ASA	American society of anesthesiologists
b/m	beat per minute
Bi-PAP	Bi-level positive airway pressure
BMI	Body mass index
CC	Closing capacity
cm	Centimeter
CPAP	Continuous positive airway pressure
DJD	Degenerative joint disease
dL	Deciliter
DM	Diabetes mellitus
DVT	Deep vein thrombosis
EBW	Excess body weight
ECG	Electrocardiogram
ERV	Expiratory reserve volume
FDA	Food and drug administration
FEV1	Forced expiratory volume in one second
FIB	Fibrinogen
FRC	Functional residual capacity
G	Gauge
GA	General anesthesia
GERD	Gastroesophageal reflux disease
GFR	Glomerular filtration rate
GI	Gastrointestinal

LIST OF ABBREVIATIONS (CONT...)

gm	Gram
h	Hour
HDL-C	High-density lipoprotein cholesterol
hsCRP	High-sensitivity C-reactive protein
I:E	Inspiratory : expiratory
IBW	Ideal body weight
ICU	Intensive care unit
IL-6	Interleukin-6
ILMA	Intubating laryngeal mask airway
IM	Intramuscular
IU	International unit
IV	Intravenous
IVC	Inferior vena cava
JVP	Jugular venous pressure
Kg	Kilogram
kg/m²	Kilogram per meter square
L	Liter
LBM	Lean body mass
LDL	Low-density lipoprotein
LMWH	Low molecular weight heparins
MAP	Mean arterial blood pressure
mg	Milligram
min	Minute
ml	Milliliter
mmHg	millimetre mercury
MO	Morbid obese
NASH	Nonalcoholic steatohepatitis
NCEP	National Cholesterol Education Program
NIDDM	Non-insulin dependent diabetes mellitus
NIH	National Institutes of Health

LIST OF ABBREVIATIONS (CONT...)

NMDA	N-methyl-D-aspartate
NSAIDs	Non-steroidal anti-inflammatory drugs
OR	Operating room
OSA	Obstructive sleep apnea
OSAHS	Obstructive sleep apnea/hypopnea syndrome
OSAS	Obstructive sleep apnea syndrome
P	Probability
PA	Pulmonary artery
PaCO ₂	Arterial Partial pressure of carbon dioxide
PACU	Postanesthesia care unit
PAI	Plasminogen activator inhibitor
PaO ₂	Arterial Partial pressure of oxygen
PCA	Patient-Controlled Analgesia
PE	Pulmonary embolism
PEEP	Positive end expiratory pressure
PONV	Postoperative nausea and vomiting
REM	Rapid eye movement
RPF	Renal plasma flow
SaO ₂	Arterial oxygen saturation
SD	Standard deviation
TBW	Total body weight
TGs	Triglycerides
TMJ	Temperomandibular joint
TNF-α	Tumor necrosis factor-α
US	United States
VAS	Visual Analogue Score
VBG	Vertical banded gastroplasty
V_{D}	Volume of distribution
WHR	Waist-to-hip ratio

LIST OF ABBREVIATIONS (CONT...)

%	Percent
°C	Celsius
μg	Microgram

JNTRODUCTJON

Introduction

Morbid obesity is associated with an increased prevalence of numerous physical ailments. The frequency and severity of co-morbid conditions is directly proportional to the weight of the patient. Based on the guide published by the National Institutes of Health, body mass index (BMI) (kg/m²) is used to classify obesity. Most consider morbid obesity to refer to patients with a BMI \geq 40 kg/m² or a BMI \geq 35 kg/m² if co-morbid conditions exist (*Gross et al.*, 2006).

The condition of morbid obesity presents a challenge to the anesthesiologist because of the altered cardiopulmonary physiology and the associated pathologies including hypertension, coronary artery disease, obstructive sleep apnea, and diabetes mellitus (*Ebert et al.*, 2006).

Morbid obesity is one of the most prevalent medical disease states in the world, yet few treatment modalities have existed up until the past decade. During the past years, innovations in surgical techniques have improved. Surgery performed for the treatment of morbid obesity commonly referred to as bariatric surgery. As a result of the increase in the number of persons undergoing bariatric surgery, the anesthesiologist has been faced with the task of managing morbidly obese patients whose anesthetic managements are complicated not only by the virtue of their weight and the presence of significant co-existing diseases but also by the complexity of the surgical procedure (*Vallejo et al., 2007*).

Surgical approaches designed to treat obesity can be classified as malabsorptive or restrictive. Malabsorptive procedures are rarely used at present. Restrictive procedures include the vertical banded gastroplasty (VBG) and gastric banding, including adjustable gastric banding (AGB) (*Ogunnaike et al.*, 2002).

The pain from an open bariatric surgical procedure can be quite significant. Epidural analgesia has become a common practice for patients undergoing gastric bypass. However, placement of the epidural catheter in obese patients can be time-consuming and technically difficult (*Schumann et al., 2003*). There is growing interest for less demanding modes of perioperative analgesia such as wound infiltration with local anesthetic combined with systemic medications to achieve multimodal analgesia (*Cashman and Dolin, 2004*).

For adequate analgesic management, timing of drug administration is extremely important. High hopes were associated with the use of drugs before the surgical injury – pre-emptive analgesia. With time the method was modified and the drugs were used throughout the perioperative period – the supply started before surgical injury and continued through the intra- and postoperative period – preventive analgesia. Local anesthetics field infiltration before the skin incision reduce peripheral sensitization, by inhibiting transduction and decreasing neurogenic inflammation at the injury site, and decreases central sensitization by inhibiting transmission of nociceptive stimuli to the spinal cord. Re-infiltration the wound with a local anesthetics before the placement of sutures, prolong its action over the early postoperative period (*Daszkiewicz and Wyleżol, 2010*).

AJM OF THE WORK