IMAGING OF CORNEAL LAYERS IN VIVO WITH ADVANCED OPTICAL TECHNIQUES

Essay

Submitted for the Partial Fulfillment of the Master Degree in **OPHTHALMOLOGY**

 $\mathcal{B}y$

MOHAMED FAWZY MAHMOUD ORABY
(M.B.B.Ch)

Supervisors

DR. TAREK MOHAMMED ZAGHLOUL

Prof. of Ophthalmology

Faculty of Medicine- Banha University

DR. HAITHAM MOHAMED FAYEK

Assist. Prof. of Ophthalmology

Faculty of Medicine-Banha University

DR. AYSER ABD EL HAMID FAYED

Assist. Prof. of Ophthalmology
Faculty of Medicine-Banha University

Faculty of Medicine
Banha University
2009

Dedication

To the soul of my Mother

To my **Father**

To my Wife the eyes I see with

To the flowers of my life

My daughters **Salma** and **Gamila**

And to my **Brother**

ACKNOWLEDGEMENT

First of all, great thanks for **AllAH**, for helping me in my life and in this work.

I would like to express my deepest gratitude to,

Prof. Dr. TAREK MOHAMED ZAGHLOUL, Prof. of ophthalmology, Faculty of Medicine, Banha University, for his excellent and creative efforts and his constant supervision through out the performance of the work.

I would like to express my sincere thanks to

Prof. Or. HAITHAM MOHAMED FAYEK, Assistant Prof. of ophthalmology, Faculty of Medicine, Banha University, who guided me with patience and kindness and for his continuous support that ensured the accuracy of the work.

My sincere thanks and appreciation go to

Prof. Or. AYSER ABD EL HAMID FAYED, Assistant Prof. of ophthalmology, Faculty of Medicine, Banha University, for her continuous support to provide a sense of purpose and direction to the entire research project.

Mohamed Fawzy Oraby

Contents

• Introduction	1
• Aim of the essay	3
• Corneal anatomy	4
• Confocal microscopy	14
• Scheimpflug-based imaging technique	44
• Anterior segment optical coherence tomography	68
• Summary	101
• References	104
• Arabic summary	1

LIST OF FIGURES

Figure	Title	page
1	Histology of normal cornea showing different types of epithelial cells	6
2	Block diagram of human cornea	9
3	Diagram of corneal epithelium showing the nerve bundles	13
4	Tandem Scanning Confocal Microscope	15
5	In vivo examination of cornea with Confocal microscopy	15
6	CM image of normal cornea	19
7	CM image of corneal basement membrane dystrophy	22
8	CM image of granular dystrophy	22
9	CM images of Fleck dystrophy	23
10	CM of pre-Descemet's membrane corneal dystrophy	24
11	CM image of Fuchs' endothelial dystrophy	26
12	CM image of Iridocorneal endothelial syndrome	26
13	CM of posterior polymorphous dystrophy	26
14	Slit lamp and CM images of corneal infiltration due to foreign body	28
15	Slit lamp and CM in cornea with no infiltration due to foreign body	28
16	CM images in viral keratitis	29
17	CM images in bacterial keratitis	29
18	CM image in Acanthameba keratitis	32

19	CM grading of corneal haze in keratoconus	32
20	CM showing microfolds of bowman's layer 1 week after LASIK	35
21	CM image of post LASIK interface particles	35
22	CM images of high-brightness particles after LASIK	36
23	CM images of the retro ablation layer before and after LASIK	36
24	CM showing flap and regenerated nerves after lasik	37
25	CM of corneal nerve fiber bundles pre and post lasik	37
26	CM image of post phaco wave like epitheliopathy	40
27	CM image of post phaco wave like epitheliopathy	40
28	The basic optical geometry of an ordinary camera	46
29	The basic optical geometry of scheimpflug camera	46
30	The optical system for slit image photography in Scheimpflug principle	47
31	Scheimpflug camera (Oculus Pentacam)	47
32	Corrected Scheimpflug imaging for accurate measurement of corneal thickness	49
33	Scheimpflug imaging showing Fuchs Endothelial Dystrophy	52
34	Scheimpflug imaging showing Vernal Keratoconjuntivitis	52
35	Scheimpflug imaging showing corneal scar	53
36	Scheimpflug imaging showing corneal thinning after herpetic keratitis	53
37	Scheimpflug imaging showing INTACS	56
38	Scheimpflug imaging showing INTACS	56
39	Scheimpflug image showing site of INTACS	57

40	Scheimpflug image showing epithelial ingrowth Post LASIK	61
41	Scheimpflug image showing epithelial ingrowth Post LASIK	61
42	Scheimpflug image showing examples of thick, normal and thin corneas	64
43	Illustration of the principle of reflectometry	72
44	Value of low coherence light	72
45	Schematics of the basic fiber optic OCT system.	73
46	Illustration comparing ocular transmissions of 1310 nm &830 nm light.	73
47	UHR OCT images of a healthy human cornea	76
48	AS OCT showing contact lens complications	76
49	ASOCT cross-sectional images of the cornea in inflammatory diseases	77
50	AS OCT cross-sectional images of bullous keratopathy	77
51	AS OCT of corneal scar after penetrating ocular trauma	79
52	AS OCT image shows location of corneal foreign body	79
53	Slit lamp and AS OCT images of calcified corneal lesion	80
54	Slit lamp and AS OCT images showing Descemet's membrane detachment.	81
55	AS-OCT images of pathologic opaque cornea	83
56	AS OCT image of advanced keratoconus	84
57	ASOCT tomograms of corneal changes after cataract surgery	85
58	ASOCT cross-sectional image 2 months after penetrating keratoplasty	86
59	AS OCT showing Descemet stripping endothelial keratoplasty	86
60	AS OCT showing Descemet's membrane stripping endokeratoplasty	87

61	AS OCT image of corneal scar 8 years after radial keratotomy	88
62	AS OCT image of LASIK flap	91
63	AS OCT of femtosecond LASIK flap in myopic patient	91
64	Post LASIK AS OCT image showing flap bed interface	92
65	AS OCT measurement of LASIK flap	92
66	AS OCT images showing post LASIK epithelial ingrowth	93
67	Slit lamp and AS OCT images showing post LASIK epithelial ingrowth	93
68	AS-OCT corneal image of a post-LASIK posterior corneal ectasia	94
69	Slit lamp and AS OCT images of post LASIK corneal ectasia	94
70	Slit lamp and OCT images showing fluid cleft syndrome	95
71	Slit lamp and OCT images of Intacs	97

LIST OF ABBREVIATIONS

AD Analog to digital Anterior segment optical coherence tomography AS OCT **CCT** Central corneal thickness **CES** Comprehensive eye scanner CM Confocal microscopy **EMBD** Epithelial basement membrane dystrophy **HSV** Herpes simplex virus **ICE** Iridocorneal endothelial dystrophy **INTACS** Intracorneal ring segments **LASIK** Laser in situ keratomileusis LTK Laser thermokeratoplasty **OCT** Optical coherence tomography **PKD** Posterior keratocyte density **PMMA** Polymethyl methacrylate **PPD** Posterior polymorphus dystrophy **PRK** Photorefractive keratectomy **PTK** Phototherapeutic keratectomy **RSOD** Rapid scanning optical delay **SLD** Super luminscent diode **SOCT** Spectral optical coherence tomography **TSCM** Tandem scanning confocal microscopy **UHR** Ultra high resolution UP Ultrasound pachymetry Ultraviolet A UVA

AIM OF THE WORK

The aim of this essay is to review principles, applications, advantages and disadvantages of advanced optical imaging techniques which are used for imaging of corneal layers in vivo.

The cornea serves two specialized functions: It forms a protective barrier that shields the eye from the external environment and serves as the main refractive element of the visual system, directing incoming light through the lens for precise focusing on the retina.

Corneal diseases and refractive errors represent some of the most common ocular disorders among patients attending ophthalmology clinics. Worldwide, corneal infectious diseases have compromised the vision of more than 250 million people and have blinded over 6 million of them (Smolin et al., 2004).

Advances in imaging of the cornea in vivo, have provided new methods for studying pathological and post-surgical changes in the optical and biomechanical properties of the cornea. Imaging of the cornea is critical to improve the diagnosis, to assess the severity and progression, and evaluate the management of corneal diseases. Advances have been rapid, with improvement in hardware (such as light sources &imaging chips), optics (such as adaptive aberrations compensation) &soft ware (such as image tracking). Advances in optical imaging techniques include confocal microscopy, using Scheimpflug principle and optical coherence tomography (Wolffsohn et al., 2007).

Visible light constitutes the major ophthalmic imaging modality as it is the most accessible to the observer's naked eye. However, wavelengths outside the visible spectrum are used in new modalities such as optical coherence tomography (OCT) (Morishige et al., 2006).

Confocal microscopy is based on directing a white light through a point or a slit which is focused on to a small volume in the living cornea and a simultaneously placed confocal point (pinhole) or slit detector is used to collect the resulting signal. This optical alignment excludes or reduces the out of focus reflected signal from above or below the focal plane. Because only one tiny volume of the cornea is obtained by each point or slit source detector a useful wide field of view of the cornea could be regained by rapid synchronous movement of the illuminator and detector. As a result, in vivo non invasive imaging of corneal layers can be performed in pathological and post operative conditions (Smolin et al., 2004).

Imaging technique based on Scheimpflug principle is performed with a camera placed at an angle to a slit beam to create an optic section of the cornea. This technique has been used for the assessment of keratoconus, corneal clearance, corneal implants and corneal thickness. Scheimpflug measures of central corneal thickness (CCT) are accurate and have good repeatability compared with other contact pachymetry techniques (**Abad et al., 2007**).

Optical coherence tomography (OCT) is a non contact imaging technology based on the principle of low coherence interferometery. OCT allows in vivo cross sectional imaging of tissues (tomography). Anterior segment optical coherence tomography (AS OCT) improves the evaluation of corneal and refractive surgical procedures such as Lasik flaps, intracorneal rings, lamellar and penetrating Keratoplasty (**Christopoulos et al., 2007**).

The cornea is an excellent example of the unification of structure and function that combine to yield an almost perfectly transparent, avascular optical tissue that also serves as a barrier between the environment and the inside of the eye (**Edelhauser and Ubels**, 2003).

The transparent cornea forms the anterior one sixth of the eyeball; seen from the front the cornea is convex but somewhat elliptical in shape. Although the dimensions of the cornea vary considerably from one person to another, the approximate measurements are about 10.6 mm vertically but about 11.7 mm horizontally. Posteriorly, the cornea is concave and circular, measuring about 11.7 mm in diameter. The cornea is thinnest at its center, measuring about 0.5 to 0.6 mm and thicker at the periphery, measuring about 0.7 mm (Snell and Lemp, 1998).

Histology of the adult cornea

I) Layers

The histological structure of the cornea comprises five distinct layers:

- The epithelium
- Bowman's layer
- The stroma
- Descemet's membrane
- The endothelium

A) Epithelium

The non-keratinized squamous stratified epithelium consists of three morphologically different cell types (Fig. 1) (Kaniski, 2007):

- 1) An average of 2-3 layers of flat polygonal surface cells, located most superficially, containing apical microvilli in contact with the tear film. These cells are joined by tight junctions, adherens junctions and desmosomes, restricting the entry of tears into the intercellular spaces and providing mechanical strength between adjacent cells (**Ban et al., 2003**).
- 2) 2-3 layers of intermediate wing cells.
- 3) A single layer of columnar basal epithelial cells. These basal cells are approx. 20 μm tall and show a limited division capacity (**Ehlers and Hjortdal, 2006**). Basal cells serve as the source for differentiation into wing and superficial cells. Hemidesmosomes attach basal epithelial cells to the underlying basement membrane. The 0.05 μm thick basement membrane is composed mainly of type IV collagens and laminins produced by the basal epithelial cells (**Tuori et al., 1996**). Stem cells are located in Vogt's girdles in the corneal limbal area (**Lavker et al., 2004; Sun and Lavker, 2004**). These cells are continuously proliferating, providing a resupply for shedding epithelial cells, thus maintaining corneal integrity. A complete turnover of corneal epithelial cells occurs in 7 to 10 days (**Ehlers and Hjortdal, 2006**).