

STRENGTHENING OF HYDROSTATICALLY LOADED CYLINDRICAL STEEL TANKS USING GFRP

A Thesis Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment

of the Requirements of M.Sc. Degree In Civil Engineering (Structures)

Prepared by ENG. MOHAMED HAMDY ALY ESMAIL

B.Sc. in Civil Engineering, June 2009 Higher Institute of Engineering – Al Shorouk Academy

Supervisors

Prof. Dr. Magda El-Rakabawy (Late)

Professor of Structural Analysis Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Prof. Dr. Abdelrahim Khalil Dessouki

Professor of Steel Structures Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Ass.Prof.Dr. Mohamed Saafan Abd-El Gawad

Assistant Professor of Structural Analysis Faculty of Engineering, Ain Shams University, Cairo, EGYPT

STRENGTHENING OF HYDROSTATICALLY LOADED CYLINDRICAL STEEL TANKS USING GFRP

A Thesis For The M.Sc. Degree in Civil Engineering (STRUCTURAL ENGINEERING)

By ENG. MOHAMED HAMDY ALY ESMAIL

B.Sc. in Civil Engineering, June 2009 Higher Institute of Engineering – El Shorouk Academy

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Elsayed Saad Abdel Salam	
Professor of Structural Analysis	
Faculty of Engineering, Zagazig University.	
Prof. Dr. Adel Helmy Salem	
Professor of Steel Structures	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Abdelrahim Khalil Dessouki	
Professor of Steel Structures	
Faculty of Engineering, Ain Shams University.	

Date: 25/3/2015

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of

Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Structure Engineering, Faculty of Engineering, Ain

Shams University, from January 2011 to November 2014.

No part of the thesis has been submitted for a degree or a

qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to

the work of others

Date: 25/3 /2015

Signature: -----

Name: MOHAMED HAMDY ALY ESMAIL

i

AUTHOR

Name : Mohamed Hamdy Aly Esmail

Date of birth : 13 August 1987

Place of birth : Egypt

Academic Degree: B.Sc.in Structural Engineering

University: Higher Institute of Engineering-El Shorouk

Academy

Date : June 2009

Grade : Excellent with Honor

DEDICATION

I wish to dedicate this work to who suffered to educate, support and encourage me during the thesis work

To my parents,

My brothers & my wife

Also, I wish to dedicate my thesis to the late **Prof. Dr. Magda Alrakabawy**For her help at the start of the search.

Also, I wish to dedicate my thesis to my professors

Prof. Dr. Abdelrahim Khalil Dessouki Dr. Mohamed saafan Abd-El Gawad

For the encouragement and support to complete this work.

ACKNOWLEDGEMENT

The author would like to express his appreciation to the late **Dr. Magda Alrakabawy**, for her help at the start of this work.

The candidate is deeply grateful to **Prof. Dr. Abdelrahim Khalil Dessouki** Professor of Steel Structures and Bridges, Faculty of Engineering, Ain Shams University, for help, encourage, cooperation sponsoring and patient advising during preparation of this work.

Also, great thanks to **Ass. Prof. Dr. Mohamed Saafan**, Ass. Professor Struct. Eng. Dept., Ain Shams University, for his help, and co-operation during the preparation of the study.

The author would like also to thank all of **Alshorouk Academy** staff. In particular, to thank **Dr. Yasser Alsaei** for his great help.

The author would also like to aknowledge the support and encouragement provided by his father, his mother, his brothers, his wife and my kids.

ABSTRACT

This study investigates a new method of strengthening cylindrical tanks subjected to hydrostatic load. Small amount of glass fibre-reinforced polymer (GFRP) sheets, used at a critical location, can effectively increase their buckling strength. A 3-D finite element model was developed to study the behaviour of cylindrical tanks with and without GFRP subjected to hydrostatic load. The finite element model was developed using ANSYS program. The state of instability under the influence of geometric and material nonlinearity is studied. The developed 3-D finite element model was compared and verified with previously published data.

Twelve tanks with variable dimensions and thicknesses were studied. The radii (R) of tanks selected are 5m, and 10m. The height to radius ratio values selected are 1.5, 2, and 2.5, where H is the height of the tank. The results obtained from the finite element analysis for steel tanks without and with strengthening of GFRP height equal to 0.3H and different thicknesses are presented.

Comparison between the buckling strength of perfect cylindrical steel tanks with and without GFRP is presented. The results show the benefit of using GFRP as a strengthening method for such structures. The strengthening effect is shown to be sensitive to the thickness and the location of the GFRP sheets.

Although perfect tanks are considered in this investigation, which is not the real case as the buckling strength decreases by including the imperfections, yet this, is a comparative study to show the effect of strengthening cylindrical tanks with GFRP.

Keywords:

Strengthening, Buckling, Hydrostatic pressure, GFRP, Finite Eelement Analysis, Cylindrical Steel Tanks.

TABLE OF CONTENTS

AKN	OWLEDGEMENT	iv
ABS	ΓRACT	v
TAB	LE OF CONTENTS	vi
LIST	OF TABLES	X
LIST	OF FIGURES	xi
LIST	OF SYMBOLS	xix
1. IN	TRODUCTION	1
1.1	General Background on Steel Tanks	1
1.2	General Background on Fibre Reinforced Polymer, FRP	3
1.3	Objectives and Scope of This Thesis	5
1.4	Structure of The Thesis	5
2. LI	TERATURE REVIEW	7
2.1	Introduction	7
2.2	Types of Tanks	7
2.3	Buckling of Thin Cylindrical Shells	8
2.	.3.1 Imperfect Cylinders	12
2.4	Types of Buckling in Cylindrical Shells	13
2.5	Typical Techniques for Strengthening Cylindrical Shells ag Buckling	
2.	.5.1 End Rings	18
2.	5.2 Using a Rings to Strengthen Cylinders Locally	18
2.6	FRP Composites to Strengthen Structures	19
2.7	FRP Strengthening of a Metallic Cylindrical Shell	22
2.8	Summary	23

3. FINITE ELEMENT MODEL	.24
3.1 Introduction	24
3.2 The Proposed Numerical Analysis Technique	25
3.2.1 Finite Element Method	25
3.2.2 Types of Elements	26
3.2.3 Geometric Nonlinearity	27
3.2.3.1 Large Deflection Small Strain Analysis	28
3.2.4 Material Nonlinearity	29
3.2.5 Element Stiffness Matrix	30
3.2.6 Element Matrix in Global Coordinate System	31
3.2.7 Types of Finite Element Techniques Used	32
3.2.8 Nonlinear Buckling Analysis	32
3.2.8.1 Incremental Control Technique	33
3.2.8.2 Iterative Solution Methods	35
3.3 Finite Element Computer Program Used in Study (ANSYS)	39
3.3.1 Introduction	39
3.3.2. Non-Linear Buckling	41
3.3.3. Eigen Value buckling	41
3.4. The Proposed Finite Element Models Used in the Analysis	43
3.4.1. Material Specification	43
3.4.2. Loading Boundary Conditions	43
3.4.3. Coordinate System	44
3.4.4. Element Type	44
3.4.6. Nonlinear Buckling Analysis	46
3.5 Summary	16

4. VERIFICATION OF THE FINITE ELEMENT MODE	L 47
4.1 Introduction	47
4.2 Verification of the Results of cylindrical steel tanks hydrostatic loaded	•
4.3 Verification of the Results of Inelastic Stability of Conical Tanl	ks 50
4.4 Verification of Strengthening of Steel Beams with GFRP Sheet	s .54
4.5 Summary	61
5. PARAMETRIC STUDY OF PERFECT CYLINDRICAL STEEL TANKS STRENGTHENED WITH GFRP	L
SHEETS	62
5.1 Introduction	62
5.2 Model Description	62
5.2.1 Finite Element Model	62
5.2.2 Element Type	64
5.2.3 Selection of Element Size	64
5.2.4 Material Properties	65
5.2.5 Loading and Boundary Conditions	66
5.2.6 Coordinate System	68
5.2.7 Nonlinear Buckling Analysis	68
5.3 Buckling Analysis of Perfect Cylindrical Steel Tanks	68
5.3.1 Parameters of Study	68
5.3.2 Results of the Study	70
5.4 Strengthening of Perfect Cylindrical Steel Tanks using GFRP Sheets	72
5.4.1 Parameters of Study	
5.4.2 Results of the Study	

	5.4.2.1 Deformations and Stresses Plots	73
	5.4.2.2 Percentage of critical load factor increase	92
5.	4.2.3 Displacement Curves	94
5.	4.2.4 Load Displacement Curves	100
5.	4.2.5 Hoop (Circumferential) Steel Stress Curves	107
5.	4.2.6 Von-Mises Steel Stress Curves	113
5.	4.2.7 Von-Mises GFRP Material Stress Curves	120
5.4.	3 Results Discussion	127
	5.4.3.1 Deformations and Displacements for Steel Tanks GFRP	
	5.4.3.2 Percentage of load factor increase	127
	5.4.3.3 Stresses in Steel Shells for Strengthened Tanks	129
	5.4.3.4 Stresses in GFRP Layer	129
6. SU	MMARY, CONCLUSIONS AND	
\mathbf{R}	ECOMMENDATIONS	130
6.1	Summary	130
6.2	Conclusions	131
6.3	Recommendations for Future Work	132
REF	ERENCES	133

LIST OF TABLES

TAI	BLE-TITLE	PAGE
2. LI	TERATURE REVIEW	
2-1	Critical buckling strength for different boundary condition Yamaki, [58]; Rotter, [38]	
2-2	Typical dry fibers properties Concrete Society, [16]; Cadei [10]	
2-3	Typical dry fibers properties Cadei et al., [10]	20
	ERIFICATION OF FINITE ELEMENT MODEL Max. Radial Displacement for Hydrostatic loading case	50
4-2	Dimensions and Critical load factors for tanks	51
	ARAMETRIC STUDY OF PERFECT CYLINDRIC TEEL TANKS STRENGTHENED WITH GFRP	AL
5-1	Tanks dimensions	69
5-2]	Results of the Study (Tanks Capacities)	71
5-3	Analysis Results of steel tanks strengthened with GFRP	128

LIST OF FIGURES

TAI	SLE-TITLE PAGE
1. IN	TRODUCTION1
1-1	Ground Cylindrical Steel Tanks2
1-2	Elevated Cylindrical Steel Tanks2
2. LI	TERATURE REVIEW
2-1	Buckling behavior of columns, flat plates and cylindrical shells Pircher and Bridge, [29]
2-2	Buckling modes for axially compressed cylinders Chajes, [12]; Rotter, [38]
2-3	Effect of boundary conditions and shell length on perfect elastic shell buckling load Rotter, [38]; Yamaki, [58]12
2-4	Elephant's foot buckle at the base of a storage tank14
2-5	Buckling cases for ring-stiffened shell Singer, [44]15
2-6	Influence of ring area on the buckling strength for shell under hydrostatic pressure (Singer etal., 1966)16
2-7	Buckling forms for a stringer-stiffened cylindrical shell (Singer, 2004)
2-8	Buckling load of stringer-stiffened cylindrical shells under axial compression Singer et al., [41]
2-9	Methods of reducing the stress concentration at the end of an FRP plate Cadei et al, [65]22
3. FII	NITE ELEMENT MODEL
3-1	Large deflection small strain analysis28
3-2	Bilinear stress strain curve29

	3-3 8-nodes shell element	30
	3-4 Force control technique	33
	3-5 Failure of force control	33
	3-6 Displacement control technique	34
	3-7 Failure of displacement control	34
	3-8 Arc-length control technique	35
	3-9 Failure of Force and Displacement Control	35
	3-10 Arc-length control technique	
	3-11 Tank model using ANSYS	44
	3-12 The geometric shape of SHELL93	45
	3-13 Internal stresses of SHELL93	45
4	. VERIFICATION OF FINITE ELEMENT MODEL	
	4-1 tank model Al-Kashif	48
	4-2 tank model Current study	49
	4-3 Horizontal displacement at hydrostatic load Value	49
	4-4 Parameters describing the dimensions of conical tanks El Damat [2]	-
	4-5 Finite-element mesh for the quarter cone El Damatty [2]	
	4-6 Finite-element mesh for the quarter cone Current study	
	4-7 Radial Displacement at Failure for inelastic analysis for Tank Ta	
	4-8 Horizontal displacements along tank generator at buckling for Tank T ₅	
	4-9 Schematic of Test Set Abushagur [4]	56
	4-10 Typical Finite Element Mesh for the rehabilitated beam Abushagur [4]	57
	4-11 Typical Finite Element Mesh for B1 Current study	

	4-12 Displacement For B1 at Failure58
	4-13 Typical Finite Element Mesh for B2 Current study59
	4-14 Displacement For B2 at Failure Current study59
	4-15 Load-Displacement Curve For B1 and B260
5	. PARAMETRIC STUDY OF PERFECT CYLINDRICAL
	STEEL TANKS STRENGTHENED WITH GFRP
	5-1 Tank Model63
	5-2 SHELL93 Geometry64
	5-3 stress-strain curve of steel65
	5-4 Tank Boundary conditions67
	5-5 Tank gradient load67
	5-6 Tanks Dimensions70
	5-7 Tank Model with GFRP sheet72
	5-8 Deformation Plot at buckling (Tank $T1-R=5m&H/R=1.00$)74
	5-9 Von-Mises Steel Stress Plot (Tank T1–R=5m&H/R = 1.00)74
	5-10 Hoop Steel Stress Plot - (Tank $T1 - R=5m \& H/R = 1.00$)75
	5-11 Deformation Plot at buckling-(Tank T2 $-$ R=5 m &H/R = 1.50)75
	5-12 Von-Mises Steel Stress Plot - (Tank T2–R=5m&H/R=1.50)76
	5-13 Hoop Steel Stress Plot - (Tank $T2 - R=5m \& H/R = 1.50$)76
	5-14 Deformation Plot at buckling-(Tank T3–R=5m&H/R = 2.00)77
	5-15 Von-Mises Steel Stress Plot - (Tank T3–R= 5 m&H/R = 2.00)77
	5-16 Hoop Steel Stress Plot - (Tank T3 – $R=5m \& H/R = 2.00$)78
	5-17 Deformation Plot at buckling-(Tank T4 $-$ R=5 m &H/R = 2.50)78
	5-18 Von-Mises Steel Stress Plot-(Tank T4 $-$ R=5m & H/R = 2.50)79
	5-19 Hoop Steel Stress Plot - (Tank T4 – R=5m & H/R = 2.50)79
	5-20 Deformation Plot at buckling-(Tank T5-R=7.5m & H/R=1.00)80