

Ain Shams University Faculty of Girls for Arts, Science and Education

"Spectroscopic and Electrical Studies of Polyaniline Prepared in Different Nanometeric Shapes"

Thesis

Submitted in the partial Fulfillment for M.Sc. Degree in Physics (Spectroscopy)

To

Physics Department

Faculty of Girls for Arts, Science and Education, Ain Shams University

By

Neveen Mohamed Ali Farrage
B.Sc in Physics, 2005

Ain Shams University Faculty of Girls for Arts, Science and Education

"Spectroscopic and Electrical Studies of Polyaniline Prepared in Different Nanometeric Shapes"

Thesis

Submitted in the partial Fulfillment for M.Sc.

Degree in Physics (Spectroscopy)

To

Physics Department
Faculty of Girls for Arts, Science and
Education, Ain Shams University
By

Neveen Mohamed Ali Farrage B.Sc in Physics, 2005

Supervisors

Prof. Dr. A.B.El-Bialy

Department of physics, Faculty of Girls, Ain Shams university Prof. Dr. Ali A. Shabaka

Spectroscopy Department Physics Division National Research Centre

Assist.prof.Dr. Roshdi S. Mohammed

Spectroscopy Department Physics Division National Research Centre

2011

Ain Shams University Faculty of Girls for Arts, Science and Education

Approval Sheet

Student Name: Neveen Mohamed Ali Farrage

Thesis Title: Spectroscopic and Electrical Studies of Polyaniline Prepared in Different Nanometeric Shapes

Submitted in the partial Fulfillment for M.Sc. Degree in Physics (Spectroscopy)

Supervisors Committee:	Signature	
Prof. Dr. A.B.El-Bialy		
Physics Department		
Faculty of Girls for Arts, Science and Education, Ain Shams University	()
Prof. Dr. A. A. Shabaka		
Spectroscopy Department		
Physics Division	()
National Research Centre	·	
Assist. Prof. Dr. R. Seoudi		
Spectroscopy Department		
Physics Division	()
National Research Centre		
Date of research: / /		
Post Graduate Studies Department		
Approval Stamp	Approval Date:	/ /
Faculty Council Approval	University Cou	ncil Approval
Date: / /	Date: / /	_

ACKNOWLEDGMENT

First, praise to my **ALLAH**, most gracious and most merciful for his ever- present help and guidance.

I wish to express my sincere gratitude to my supervisor, **Prof. Dr A.B. El-Bialy**, for her supervision, valuable advice, fruitful discussions, patient guidance and meticulous suggestions throughout the course of study that definitely stimulated and enhanced the quality of this work.

I would like to express my deepest thanks to **Prof. Dr. A. A. Shabaka**, for his keen interest in the work, continuous supervision, discussion and fruitful advice throughout all stages of the work, providing the excellent research facilities.

The author is greatly indebted to **Dr. R.Seoudi**, for suggesting the point of research encouragement, supervision, and discussions.

My heartfelt thanks to my all my tutors and colleagues in Department of Physics, in the National Research Center (NRC) especially **Badawi Ali Ahmed Anees** and **Dr.Wael Mohamed Hosam El-din Eisa** for they untiring and continued support during my thesis work.

I wish to dedicate this work to **my family,** who give me encouragement and support all the time.

CONTENTS

	Page
List of Figures	V
List of Tables	X
Abstract	XII
Summary	XV
CHAPTER 1	
GENERAL INTRODUCTION AND LITERATURE SURVEY	
1.1. Nanomaterials	1
1.2. Classification of Nanostructure Materials	3
1.3. Conducting Polymer	6
1.4. Polyaniline(PANI)	6
1.4.1. Molecular Structure of Polyaniline	7
1.4.2. Polymerization Mechanism of Polyaniline	8
1.4.3. Doping in Polyaniline: Acid Doping	10
1.5. Literature Survey	14
1.6. Aim of the Work	26
CHAPTER 2	
THEORETICAL CONSIDERATION	
2.1. Transmission Electron Microscope	28
2.1.1. Imaging and Diffraction in Transmission Electron Microscope	28
2.2. X- Ray Diffraction (XRD)	28
2.2.1 Crystallite Size Determination from Line	29

Broadening	
2.3. Origins of Molecular Spectra	3
2.3.1. Nature of Infrared Spectra	3
2.4. Ultraviolet and Visible Spectra	3
2.4.1. Nature of Electronic Excitations	3
2.4.2. Types of Ttransitions	3
2.4.3. Chromophore	4
2.4.4. Effect of Conjugation	4
2.5. Types of Electrical Conduction	4
2.5.1. Electronic Conduction	4
2.5.2. Ionic Conduction	4
2.6. D.C. Electrical Conductivity	4
2.7. Models of Conduction Mechanisms	4
2.7.1. The Tunneling Model	4
2.7.2. The Hopping Model	4
CHAPTER 3	
EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION	
3.1. Materials.	4
3.2. Preparation of the Investigated Samples	4
3.2.1. Ultrasonic Irradiation Methods	4
3.2.1. a. Preparation of Polyaniline	
Nanoparticles	4
3.2.1. b. Preparation of Polyaniline Nanotubes	5
3.2.2. Preparation of Polyaniline Nanofibers by	
Chemical Polymerization Method	5
3.3. Characterization Techniques	5
3.3.1. Transmission Electron Microscope (TEM)	٠
Measurement	5
3.3.2. X-Ray Diffraction (XRD)	5

3.3.3. FTIR Measurements	5
3.3.3.a. Advantages of FTIR Instruments	5
3.3.3.b. Sample Preparation for IR	_
Measurements	5
3.3.4. Ultraviolet Visible Spectrophotometer	6
3.3.4.a. Sample Preparation for UV-Vis Measurements	6
3.3.5. D.C. Electrical Measurements	6
CHAPTER 4	
RESULTS AND DISCUSSION	
4.1. Transmission Electron Microscopy (TEM)	6
4.1.a. TEM of PANI Nanoparticles Prepared by	6
Ultrasonic Irradiation Method	C
4.1.b. TEM of PANI Nanofibers Prepared by	6
Chemical Polymerization Method	·
4.1.c. TEM of PANI Nanotubes Prepared by	ϵ
Ultrasonic Irradiation Method	(
4.2. X-Ray Diffraction Pattern	7
4.2.1.a. X-Ray Diffraction of PANI Nanoparticles	
Prepared by Ultrasonic Irradiation	7
Method	
4.2.1.b. Effect of Oxidation Time on the	_
Crystallinity of PANI Nanoparticles	7
4.2.2. X-Ray Diffraction of PANI Nanofibers	
Prepared by Chemical Polymerization	7
Method	
4.2.3.X-Ray Diffraction of PANI Nanotubes	7
Prepared by Ultrasonic Irradiation Method	,
4.3. FTIR Spectra of PANI Nanostructures	8

4.3. 1.a. FTIR Spectrum of PANI Nanoparticles	81
4.3.1.b. FTIR Spectra of PANI Nanoparticles at Different Oxidation Times	86
4.3.2. FTIR Spectra of PANI Nano-Fibers and Tubes	90
4.4. UV-Visible Spectroscopy	97
4.4.1.UV-Vis Spectroscopic Studies of	07
Aniline Monomer	97
4.4.2.a.UV-Vis Spectra of PANI Nano-Particles, Fibers and Tubes	99
4.4.2.b.The UV-Vis Spectra of PANI	
Nanoparticles at Different Oxidation	100
Times	
4.4.3. Effect of Solvent on the UV-Vis Spectra of	105
PANI Nano-Particles, Fibers and Tubes	103
4.4.3.a. Effect of Solvent on the UV-Vis Spectra	
of PANI Nanoparticles at Different	105
Oxidation Times	
4.4.3.b. Effect of Solvent on the UV-Vis Spectra of PANI Nano-Fibers and Tubes	112
4.4.4.Calculation of the Optical Band Gap of	119
PANI Nano-Particles, Fibers and Tubes	119
4.5. Electrical Conductivity	125
4.5.1. Current-Voltage Characteristics	125
4.5.2. D.C. Electrical Conductivity	128
Conclusion	140
References	147
Arabic Abstract	162

List of Figures

Figure		Page
Figure 1.1	TEM of gold nanparticles	4
Figure 1.2	(a) TEM of Polystyrene(PS) nanotubes, and (b) TEM of polyvinylpyrrolidon (PVP) hollow nanofibers	4
Figure 1.3	(a)TEM of gold nanoplates and (b) hexagonal arrays of thiolized Pd nanocrystals.	5
Figure 1.4	Complex structure formed from silicon carbide grown from a vapor phase.	5
Figure 1.5	Chemical structure of polyaniline (PANI) and various oxidation states.	9
Figure 1.6	Formation mechanism of the aniline radical cation and its different resonant structures.	11
Figure 1.7	Formation mechanism of dimer and its corresponding radical cation.	11
Figure 1.8	One possible way of PANI polymer formation.	12
Figure 1.9	Protonation of polyaniline emeraldine base to emeraldine salt.	13
Figure 2.1	Electronic energy levels and transitions.	37

Figure 2.2	Schematic diagrams illustrating the electron hopping across and the electron tunneling through a square and a triangular potential barrier.	47
Figure 3.1	Transmission electron microscope Jeol - JEM-1011.	53
Figure 3.2	X-Ray Diffraction - D8 advance X-Ray diffractometer; Bruker AXS.	55
Figure 3.3	FTIR, Jasco Instrument model 6100.	57
Figure 3.4	Schematic diagram for the base line method.	57
Figure 3.5	The mold used for preparation of KBr disk.	59
Figure 3.6	V-570 UV/VIS/NIR Jasco Spectro photometer.	62
Figure 3.7	The optical system of double beam UV/Vis spectrophotometer.	62
Figure 3.8	D.C. electrometer high resistance meter, Keithely 6517A.	63
Figure 3.9	The sample holder used for conductivity Measurements.	64
Figure 3.10	The circuit used for electrical conductivity measurement	64
Figure 4.1	TEM images of PANI nanoparticles prepared at different oxidation times (a)30min, (b) 60min, (c) 90min, and (d) 120min.	66

Figure 4.2	TEM image of PANI nanofibers.	68
Figure 4.3	The TEM image of PANI nanotubes.	70
Figure 4.4	Schematic diagram of the "micelle theory" formation mechanism proposed for the self-assembly of PANI nanotubes.	70
Figure 4.5	X-Ray diffraction pattern of PANI prepared at different oxidation times (30, 60, 90, and 120min).	76
Figure 4.6	X-Ray diffraction patterns of PANI nanofibers.	80
Figure 4.7	X-Ray diffraction patterns of PANI nanotubes.	82
Figure 4.8	The infrared spectrum of PANI nanoparticles at oxidation time 30min.	84
Figure 4.9	The Infrared spectra of PANI nanoparticles at different oxidation	88
Figure 4.10	times (30, 60, 90, and 120min). The intensity ratio quinonoid to	92
	benzenoid structure vs oxidation times.	
Figure 4.11	The infrared spectra of PANI (a) nanofibers, and (b) nanotubes.	93
Figure 4.12	UV-Vis spectrum of aniline monomer.	98
Figure 4.13	UV-Vis spectra of PANI (a) nanoparticles, (b) nanofibers, and	101

(c) nanotubes DMF solvent

Figure 4.14	UV-Vis spectra of PANI nanoparticle prepared at different oxidation times (a) 30min, (b) 60min, (c) 90min, and (d)120min in DMF solvent.	103
Figure 4.15	UV-Vis spectra of PANI nanoparticle prepared at different oxidation times (a) 30min, (b) 60min, (c) 90min, and (d)120min in mixture of (DMF-Methanol) solvent.	108
Figure 4.16	UV-Vis spectra of PANI nanoparticles prepared at different oxidation times (a) 30min, (b) 60min, (c) 90min, and (d)120min in deionized water solution.	109
Figure 4.17	Representation of the proposed hydrogen bonding interaction between methanol solvent and emeraldine salt.	113
Figure 4.18	UV-Vis spectra of PANI (a) nanoparticles, (b) nanofibers, and (c) nanotubes in mixture of (DMF-methanol) solvent.	115
Figure 4.19	UV-Vis spectra of PANI (a) nanoparticles, (b) nanofibers, (c) nanotubes in deionized water solution.	116
Figure 4.20	Relation between $(\alpha h \nu)^2$ vs hv for PANI nanoparticles prepared at different oxidation times.	121

Figure 4.21	nano-fibers and tubes prepared by chemical polymerization and ultrasonic irradiation methods.	122
Figure 4.22	The I-V characteristic of PANI nanoparticles prepared at different oxidation times measured at room temperature.	126
Figure 4.23	The I-V characteristic of PANI nano- fibers and tubes measured at room temperature.	127
Figure 4.24	Protonation reaction of PANI and formation polaron.	135
Figure 4.25	The vairation of the DC conductivity with 1000/T as a function of particle size and shape of PANI.	137

List of Tables

Table		Page
Table 4-1	Estimated values of d-spacing, interchain separation, particle size, and dgree of crystallinity of PANI nanoparticles at different oxidation times.	77
Table 4-2	Assignments of the IR absorption bands of doped PANI nanoparticles at oxidation time 30min.	85
Table 4-3	Assignments of the IR absorption bands of doped PANI nanoparticles at different oxidation times (30, 60, 90, and 120min).	89
Table 4-4	The intensity ratio of the absorption bands of quionid to benziniod structure for doped PANI nanoparticles at different oxidation times.	91
Table 4-5	Assignments of the IR absorption bands of doped PANI nano-particles fibers and tubes.	94
Table 4-6	Assignment of the UV-Vis absorption bands of doped PANI nanoparticles at 30min, nano-fibers and tubes in DMF solvent.	102
Table 4-7	Assignments of the UV-Vis absorption bands of doped PANI nanoparticles at different oxidation times in DMF	104

solvent

- Table 4-8 Intensity ratio of the UV-Vis bands of 106 quionid to benzeniod structure for doped PANI nanoparticles at different oxidation times in DMF solvent.
- Table 4-9 Assignment of the UV-Vis absorption 110 bands of doped PANI naoparticles at different oxidation times in different solvent(DMF, mixture of (DMF-methanol), and deionized water).
- Table 4-10 Assignment of the UV-Vis absorption 117 bands of doped PANI nanoparticles at oxidation time 30min, nano-fibers and tubes in different solvent (DMF, mixture of (DMF-methanol), and deionized water).
- Table 4-11 The particle size and optical band gap 123 for PANI nanoparticles at different oxidation times.
- Table 4-12 conductivity at room temperature and 131 particle size for PANI with different particle size and shape.
- Table 4-13 Activation energy and particle size for 139 PANI with different particle size and shape.