Evaluation of Different Protocols for Management of Thrombotic Disorders

Essay

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented By

Mostafa Seif El-Nasr Mohamed Ahmed (M.B., B.Ch.)

Under Supervision of

Prof. Dr. Hoda Ahmed El-Sayed Gad-Allah

Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Prof. Dr. Amal Mostafa El-Afifi

Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Dr. Mohamed Hamdy Mohamed Ahmed

Lecturer of Internal Medicine and Hematology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2011

Summary and Conclusion

Better understanding of the molecular mechanisms underlying thrombogenesis, advances in recombinant DNA technology, isolation and characterization of antithrombotic proteins from hematophagous organisms, and improvements in structure-based drug design have accelerated the pace of drug discovery. With these advances, we now have an array of new antithrombotic drugs.

Limitations of the currently available anticoagulants have fanned the continuing search for new anticoagulants with improved pharmacological and biosafety profile, and equal, if not superior efficacy. Targets of inhibition include the factor VIIa/tissue factor pathway (recombinant nematode anticoagulant peptide c2, tissue factor pathway inhibitor), factor Xa (fondaparinux, idraparinux, razaxaban), factor Va and VIIIa

pathway (recombinant activated protein C, soluble thrombin thrombomodulin) and (hirudin. bivalirudin. argatroban, ximelagatran, dabigatran). Irrespective of their mode of action, bleeding complications are invariable with all anticoagulants. Conventional assessment and measures should remain as first-line responses to bleeding complicating the use of these anticoagulants. Antidotes do not exist for the overwhelming majority of these agents. The role recombinant activated factor VIIa in controlling bleeding is still investigational. Definitive haemostatic strategies for bleeding

List of Contents

T	itle	Page
•	List of Abbreviations	II
•	List of Figures	V I
•	List of Tables	VIII
•	Introduction	1
•	Aim of the Work	5
•	Review of Literature:	
	Chapter 1: Coagulation pathway and physiology	7
	> Chapter 2: The aetiology of Thrombosis	31
	> Chapter 3: Different presentations of Thrombosis	47
	> Chapter 4: Traditional Antithrombotics	66
	> Chapter 5: New Antithrombotic Agents	89
	> Chapter 6: Different Protocols For thrombotic management, Controversies and Challenges	
•	Summary and Conclusion	178
•	References	180
•	Arabic Summary	••••

List of Abbreviations

A 0/5	A 1 1		
ACT	Activated clotting time		
APC	Activated protein c		
APTT	Activated partial thromboplastin time		
ATIII	Antithrombin III		
BRVO Branch retinal vein occlusion			
CAST	Chinese acute stroke trial		
CI Confidence interval			
COX Cyclooxygenase			
CrCl Creatinine clearance			
cs	Cystathionine synthase		
СТ	Computed tomography		
CURE	Clopidogrel in unstable angina to prevent recurrent events		
CVT Cerebral vein thrombosis			
Da	Daltons		
DNA Deoxyribonucleic acid			
DVT	Deep veinous thrombosis		
EFAT	European atrial fibrillation trial		
ELT	Euglobuline time		
ESPRIT	Enhanced suppression of the platelet IIb/IIIa receptor with integrilin therapy		
FRISC	Fragmin and fast revascularisation during instability in coronary artery disease		

List of Abbreviations (Cont.)

FV	Factor V		
GPIb	Glycoprotein Ib		
GUSTO	Global utilization of streptokinase and tissue plasminogen activator for occluded coronary artery		
HCII	Heparin cofactor II		
HIT	Heparin induced thrombocytopenia		
HMWK	High molecular weight kininogen		
HRG	Histidine rich glycoprotein		
HRT	Hormonal replacement therapy		
INR	International normalized ratio		
ISAR- CHOICE	Intracoronary stenting and antithrombotic regemin:choose between 3 high doses for immediate clopidogrel effect		
ISIS	International study for infarct survival		
IV	Intravenous		
LMWH Low molecular weight heparin			
Lpa	Lipoprotein a		
MEDAL Multinational etoricoxib and diclofenac arthritis long term			
MI	Myocardial infarction		
MRI	Magnetic resonance imaging		
MTHFR	Methylene tetrahdrofolate reductase		
MW	Molecular weight		
OR	Odds ratio		

List of Abbreviations (Cont.)

PAI	Plasminogen activator inhibitor		
PaO ₂	Partial pressure of arterial oxygen		
PC	Protein C		
PCI	Percutaneous coronary intervention		
PE	Pulmonary embolism		
PF4	Platelet factor 4		
PG	Prostaglandin		
PNH	Paroxysmal nocturnal hemoglobinuria		
PRISM-PLUS	Platelet receptor inhibition in ischemic syndrome management in patients limited by unstable signs and symptoms		
PS	Protein S		
PT	Prothrombin time		
PTT	Partial thromboplastin time		
RR	Relative risk		
RVO	Retinal vein occlusion		
RVT	Retinal vein thrombosis		
SALT	Swedish aspirin low dose trial		
SBP	Systolic blood pressure		
Sc	Subcutaneous		
SLE	Systemic lupus erythromatosis		
SVT	Splanchnic vein thrombosis		
TAFI	Thrombine activatable fibrinolytic inhibitor		
TARGET	Therapeutic arthritis research and gastrointestinal event trial		

List of Abbreviations (Cont.)

тст	Thrombin clotting time		
TEG	Thromboelastography		
TF Tissue factor			
TFPI	Tissue factor pathway inhibitor		
TIMI Thrombolysis and thrombin inhibition myocardial infarction			
TM	Thrombomodulin		
TTP	Thrombotic thrombocytopenic purpura		
TX	Thromboxane		
U/d Unit per day			
UA	Unstable angina		
UFH	Unfractionated heparin		
US FDA	United States Food and Drug Administration		
V/Q	Ventilation-perfusion		
VKA	A Vitamin K antagonist		
VTE	Venous thromboembolism		
vWF	von Willebrand factor		
WHO	World health organization		
WRIGHT	WHO Research into global hazards of travel		

List of Figures

Fig. No	Title	Page
Figure (1): Basic representation of the elements hemostasis (<i>Goodnight</i> , 2001)	
Figure (2):	A stylized view of endothelial function related to procoagulation anticoagulation. (Steffel, 2006)	nd
Figure (3):	Classic theory of coagulation as proposed Paul Morawitz, in which the prothrombin, calcium activation yielded thromb converting fibrinogen to fibrin (<i>Hoffbrand al.</i> , 2005).	by in, ! et
Figure (4):	The coagulatin cascade model. The point integration between the intrinsic an extrin pathways in this model occurs with factor activation. HMWK, high molecular weig kininogen (<i>Hoffman et al.</i> , 2005)	sic IX ght
Figure (5):	Diagram of leg veins (anterior view of rig	-
Figure (6):	Diagnostic algorithm using D-dimer testi and ultrasound imaging in patients w suspected DVT (Wells, 2003)	ith
Figure (7): (CT Scans obtained 1 hour 40 minutes after to onset of symptoms suggestive of cortic stroke in the territory of the right midden cerebral artery	cal dle
Figure (8)	: Fibrinolytic agents (Martin, 2006).	79 -

Figure		Comparative Martin, 20 0	-	-		v	80 -
Figure	` ′	lassification of al., 2008)			_	. 00 0	90 -
Figure	` /	Mechanism hibitors (<i>Left</i>					04 -

List of Tables

Tab. No	Title	Page		
Table (1):	Proteins involved in the formation of (Butenas et al., 2007)			
Table (2):	Summary of the Phases of coagulation proposed by the current cell-based theo coagulation (<i>Loscalzo et al.</i> , 2003)	ry of		
Table (3): (Clinical model for predicting pretest probate of deep-vein thrombosis (DVT)* (<i>V</i> 2003).	Vells,		
Table (4): 1	Protocol for heparin dose adjustment (Batal., 2001).			
Table (5):	Methods for preparation of LMWHs danaparoid (<i>Hirsh et al.</i> , 1992)			
Table (6): H	Factors IXa inhibitors (Cohen et al., 2006).	94 -		
Table (7):	Indirect factor Xa inhibitors (Yusuf et 2006).			
Table (8):	Direct factor Xa inhibitors (Jeffery et 2008).			
Table (9) General approach in treating patients with cancer who developed VTE (Pallavi et al.,2010): - 142 -				
Table (10):	Optimal duration of anticoagulation follo DVT(<i>Buller et al.</i> , 2005)	_		
Table (1	1): Summary of current data antiplatelet therapy in st prevention: (Sacco et al., 2008)	roke		

Table(12):Risk	stratification,	recommended
throm	boprophylaxis and o	ptimal duration of
prophy	ylaxis by patient gro	oup(Geerts et al.,
2008)		171 -

Introduction

Thrombosis is the formation of a blood clot (thrombous) inside a blood vessel, obstructing the flow of blood through the circulatory system. When a blood vessel is injured, the body uses platelets and fibrin to form a blood clot, as the first step in repairing it (hemostasis) to prevent loss of blood. If that mechanism causes too much clotting, and the clot breaks free, a thrombous is formed (*Furie and Furie*, 2008).

Intravascular thrombous formation present the greatest challenge in the field of cardiovascular disease. Within the arterial tree, it is the culprit including clinical presentation in the majority of patients presenting with acute coronary syndrome (ACS). Thrombous formation within the venous circuit also results in substantial morbidity and mortality. Despite significant advances in prevention and treatment of venous thromboembolism (VTE), pulmonary embolism (PE) remains a common preventable cause of hospital death (*Horlander et al.*, 2003).

Concepts of hemostasis and thrombosis emphasize the endothelial cells as a regulatory interface between blood and tissues. The endothelium constitutes an immense surface area ideally suited to control biologic events at the vessel surface. These include expression of membrane surface receptors for assembly of zymogens, localization of enzyme activity, orientation of adhesive glycoprotein interactions, and binding of

signals transducing ligands. In health, surface oriented interactions of endothelium serve primarly to maintain blood fluidity. In disease, disordered thromboregulation may acutely culminate in arterial and venous thrombosis (*Nachman*, 1992).

Of the three mechanisms of thrombosis defined by Virchow in the 19th centuary, vessel wall injury, stasis, and change in the composition of blood (hypercoagulability). Hypercoacgulability can be inherited or acquired. The inherited type which is also called inherited thrombophilia, should be suspected when a patient has recurrent or life threatening venous thromboembolism, has a family history of venous thrombosis, is younger than 45 years of age, or has no apparent acquired risk factors, or if the patient is a woman who has a history of multiple abortions, stillbirth, or both. Acquired and genetic causes frequently interact (*Seligohn et al.*, 2001).

By targeting the three essential components of the arterial thrombous, platelets, fibrin and thrombin, various regimens, combining antiplatelet agents (e.g. aspirin. Clopidogrel, GP IIb/IIIa inhibitors), antithrombotics (e.g. heparin, LMWH (enoxaparin), DTI(Bivalirudin)), and either fibrinolysis have improved outcomes following acute ischemic syndromes (de Lemos et al., 2000).

Anticoagulant therapy remains the cornerstone of VTE treatment. Such treatment is usually divided into 2 stages. Rapid initial anticoagulation is givin to minimize the risk of thrombous extention and subsequent fatal PE, wherase extended

anticoagulation is administered to prevent recurrent VTE, thereby reducing the risk of postphlebitic syndrome. With currently available drugs, immediate anticoagulation can only be effected with parenteral anticoagulants, such as heparin (UFH), low molecular weight heparin (LMWH) fondaparinux. therapy usually Extended involves the administration of an oral anticoagulant. Currently, the orally available anticoagulants are the vitamin K antagonists such as warfarin.LMWH and fondaparinux have simplified the intial treatment of VTE. Both agents have better bioavailability after subcutaneous injection and longer have life than heparin. In addition, they produce a more predictable anticoagulant response. These features permit once daily subcutaneous dosing without coagulation monitoring. Consequently the majority of patients with VTE can now be treated with LMWH or fondaparinux as outpatients, an approach that reduces the health care costs and enhances the patient satisfaction (Peter et al., 2008).

Although LMWH and fondaparinux are important advances in VTE treatment, some difficulties persist. The need for once daily subcutaneous injections renders treatment problematic for some patients. This has prompted the introduction of longer acting parenteral anticoagulants that can be given subcutaneously on a once-weekly basis, and the development of novel oral anticoagulants with a rapid onset of action. Warfarin also problematic in the setting of VTE. Its slow onset of action necessitates overlap with a parenteral

anticoagulant for at least 5 days. The therapeutic dose of warfarin varies from patient to patient reflecting, at least in part, differences in dietary vitamin K intake, genetic polymorphisms in the enzymes involved in warfarin metabolism, and administration of concomitant medications that suppress or potentiate the anticoagulant effects of warfarin. Frequent coagulation monitoring is necessary to ensure that a therapeutic anticoagulant response is achieved with warfarin (Ansell et al., 2004).

The requirement of frequent coagulation monitoring is burdensome for patients and physicians and costly for the healthcare system. The difficulties surrounding warfarin administration have spurred the development of new oral anticoagulants that can be given in fixed doses with little or no coagulation monitoring. The need for such agents has increased in the recent years with emerging evidence that patients with unprovoked VTE require anticoagulation therapy for at least 6 months and possibly longer (*Kearon*, 2004).