In Vitro Study of the Effect of Toothbrushing on Surface Roughness of two different types of Composite Resin

Thesis

Submitted to Operative Dentistry Department
Faculty of Dentistry, Ain Shams University
In Partial Fulfillment of the Requirements For
Master Degree in Restorative dentistry

By **Rafik Mussa Idris Elkutrani**

B.D.S Faculty of Dentistry Garyounis University

Benghazi-Libya

Diploma of Conservative Dentistry, Crown & Bridge and Endodontics
Faculty of Dentistry - Alexandria University

Supervisors

Prof. Dr./ Moukhtar Nagui Ibrahim

Professor of operative Dentistry Faculty of Dentistry - Ain Shams University

Dr./ Dalia Ibrahim Al-korashy

Associate professor of Dental materials Biomaterials Department Faculty of dentistry –Ain Shams University

2011

تأثير تنظيف الأسنان بالفرشاة على خشونة سطح نوعين مختلفين من حشوات الراتنج المحمل (دراسة معمليه)

رسالة مقدمة إلى كلية طب الأسنان - جامعه عين شمس في طب الأسنان التحفظي وفقا لمتطلبات نيل درجة الماجستير

مقدمه

رفيق موسى إدريس القطرانى بكالوريوس طب وجراحة الفم والأسنان

جامعة قاريونس

بنغازي- ليبيا

كلية طب الأسنان

جامعة عين شمس

المشرفون

أ.د/ مختار ناجى إبراهيم أستاذ العلاج التحفظي كليه طب الأسنان جامعه عين شمس

أ.م.د/ داليا إبراهيم القرشي

أستاذ مساعد المواد الحيوية كلية طب الاسنان - جامعة عين شمس

Summary and Conclusions:

Surface roughness of restorative materials is a very complex phenomenon that is affected by several extrinsic and intrinsic factors. Roughness of restorative materials in the oral environment results from direct contact between tooth and the restoration during mastication, oral parafunctions, as well as toothbrushing.

The purpose of this study was to evaluate and compare the surface roughness of two resin composite restoratives under simulated tooth brushing machine with different brushing cycles and different types of tooth bristles.

A total of 120 specimens of two different types of light curing resin composite restoratives: (Methacrylate composite, ALPHA-DENT® and Silorane based composite Filtik P90) were made for this study. The specimens were made in the form of cylindrical disks, A mylar strip and a glass slide was placed over the resin composite. The specimens were light cured with light curing unit at 400-500 mw/cm², a major group of 60 specimens of each material were randomly divided into two minor subgroups (30 specimens) in each group according to the type of toothbrush bristle used in the study: (soft bristle & Medium bristle). Then these subgroups were devided again to three smaller subgroups according to the time of brushing, (10 specimens) (5 min, 10min, 15min).

Every specimen was measured for the detection of the average pre-brushing surface roughness (Ra1) and the results

بِسُحِ اللهِ الرَّمْنِ الرَّحِيْةِ الْحَدِّمِنِ الرَّحِيْةِ الْحَدُّمِ الرَّحِيْةِ الْحَدِيْقِ الْحَدُّمُ الرَّحِيْةِ الْحَدِيْقِ الْحَدُيْنِ الْحَدْنِ الْحَدْنِ الْحَدْنِ الْحَدْنِ الْحَدْنِ الْحَدْنِ الْحَدْنِ الْحَدْنِ الْحَدُيْنِ الْحَدْنِ الْمُعْلَى الْمُعْتَقِيْنِ الْحَدْنِ الْمُعْتَقِيْنِ الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِقِي الْمُعْلَى الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِي الْمُعْلِقِي الْمُعْلِقِ الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِقِي الْمُعْلِقِ

صدق الله العظيم

Contents

List of tables	(I)
List of figures	(III)
Introduction	(1)
Review of literature	(3)
Aim of the study	(52)
Materials and methods	(53)
Results	(64)
Discussion	(85)
Summary and Conclusions	(92)
References	(96)
Arabic summary	

List of Tables

Table NO.		Page
Table 1	Levels of the Study	58
Table 2	Factorial design of experiments	59
Table 3	Surface roughness results (Mean values± SDs) for both composite types as function of brush type and brushing time	65
Table 4	Surface roughness results (Mean values± SDs) for methacrylate based composite with soft bristle brush as function of brushing time	67
Table 5	Surface roughness results (Mean values± SDs) for methacrylate based composite with medium bristle brush as function of brushing time	69
Table 6	Surface roughness results (Mean values± SDs) for methacrylate based composite as function of brush type and brushing time	71

Table 7	Surface roughness results (Mean values± SDs) for silorane based composite with soft bristle brush as function of brushing time	74
Table 8	Surface roughness results (Mean values± SDs) for silorane based composite with medium bristle brush as function of brushing time	75
Table 9	Surface roughness results (Mean values± SDs) for silorane based composite as function of brush type and brushing time	77
Table 10	Surface roughness results (Mean values± SDs) for methacrylate and silorane based composite as function of soft bristle brush type and brushing time	80
Table 11	Surface roughness results (Mean values± SDs) for methacrylate and silorane based composite as function of soft bristle brush type and brushing time	82
Table 12	Three way analysis of variance ANOVA test of significance comparing variables affecting surface roughness mean values	83

List of Figures

Figure No.	contents	Page No.
Figure 1	Filtek P90	54
Figure 2	ALPHA-DENT® light cure hybrid composite	54
Figure 3	Teflon mold	56
Figure 4	light curing device	56
Figure 5	specimen curing	56
Figure 6	surface roughnes tester	61
Figure 7	Specially designed brushing device	61
Figure 8	Side view showing the toothbrushing device, Applying load on the specimen of 250gm	62

Figure 9	column chart of surface roughness mean values for both composite types as function of brush type and brushing time	65
Figure10	column chart of surface roughness mean values for methacrylate based composite with soft bristle brush as function of brushing time	68
Figure 11	column chart of surface roughness mean values for methacrylate based composite with medium bristle brush as function of brushing time	70
Figure 12	column chart of surface roughness mean values for methacrylate based composite as function of brush type and brushing time	72
Figure 13	column chart of surface roughness mean values for silorane based composite with soft bristle brush as function of brushing time	74
Figure 14	column chart of surface roughness mean values for silorane based composite with medium bristle brush as function of brushing time	76

Figure 15	column chart of surface roughness	78
	mean values for silorane based composite as function of brush type and brushing time	
Figure 16	column chart of surface roughness mean values for methacrylate and silorane based composite as function of soft bristle brush type and brushing time	80
Figure 17	column chart of surface roughness mean values for methacrylate and silorane based composite as function of medium bristle brush type and brushing time	82
Figure 18	Column chart comparing variables affecting surface roughness mean values	84

Intruduction

INTRODUCTION

Resin based restoratives are increasingly being used in dentistry, and the continual development of materials has made a variety of tooth colored composites available for clinical use^(25,26). These present a wide range of organic and inorganic components that may affect both there handling characteristics and properties. The long term clinical service of composite filling depend s on their physical characteristics. One of the most important properties is the ability to withstand wear, as any loss of substance could result in altering the anatomic shape and affect the performance of the restoration ^(27,31,32).

Although, clinicians tend to concentrate on occlusal wear, some researchers have demonstrated that the abrasion forces produced by oral hygiene methods can adversely affect the surface characteristics of restoratives (53,62).

An increase in surface roughness of material used in the oral environment has many consequences. A rougher surface texture can lead to decreased gloss and discoloration or staining of the material surface, both of which affect the esthetic quality of restorations (37,54,59). Furthermore, it may also lead to the accumulation of dental plaque, leading to secondary caries and periodontites. Therefore ideal to obtain composite restorations with smooth surfaces that do not deteriorate over the course of time. Smooth highly polished restorations have been shown to be more esthetic and more easily maintained than restorations with rougher surfaces (73,75).

Studies that evaluated the effect of toothbrushing on the deterioration of composite resin materials for direct and indirect use showed a rapid increase in surface roughness and found differences between the materials (21,32,56,57,77,88). As different parameters (number of strokes, load, toothpaste) were used in the studies, the results can hardly be compared.

The evaluation of the deterioration capacity by simulated toothbrushing in vitro might be a surrogate parameter to assess the ability of a material to maintain its gloss and smoothness and prevent staining of the material. Based on this, the study will be conducted.