

NUMERICAL SIMULATION OF SMOKE CONTOL IN UNDERGROUND CAR PARK BY JET FAN SYSTEM AND DUCTED SYSTEM

By

Eng. Mohamed Hassanin Ahmed Abdel Wahab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

NUMERICAL SIMULATION OF SMOKE CONTOL IN UNDERGROUND CAR PARK BY JET FAN SYSTEM AND DUCTED SYSTEM

By

Eng. Mohamed Hassanin Ahmed Abdel Wahab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil

Professor, Mechanical Power Engineering
Department Faculty of
Engineering, Cairo University

Dr. Taher Mohamed Abou Deif

Assistant Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Ahmed El-Degwy Ahmed El-Degwy

Assistant Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

NUMERICAL SIMULATION OF SMOKE CONTOL IN UNDERGROUND CAR PARK BY JET FAN SYSTEM AND DUCTED SYSTEM

 $\mathbf{B}\mathbf{y}$

Eng. Mohamed Hassanin Ahmed Abdel Wahab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by examining committee

Prof. Dr. Essam E. Khalil

(Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University)

Main Thesis Advisor

Prof. Dr. Mahmoud Ahmed Fouad

(Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University)

Internal Examiner

Prof. Dr. Osama Ezzat Abd-Ellatif

(Professor, Mechanical Power Engineering Department Faculty of Engineering, Banha University)

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer: Mohamed Hassanin Ahmed Abdelwahab

Date of Birth: 1 / 2 / 1989
Nationality: Egyptian

E-mail: Mohamed.elkhial2011@yahoo.com

Phone: 01119755999

Address:

Registration Date: 1 / 10 / 2013 Awarding Date: / / 2017

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil

Dr. Taher Mohamed Abou Deif

Dr. Ahmed El-Degwy Ahmed El-Degwy

Examiners: Prof. Dr. Essam E. Khalil

Prof. Dr. Mahmoud Ahmed Fouad Prof. Dr. Osama Ezzat Abd-Ellatif

(Professor, Mechanical Power Engineering Department Faculty of

Engineering, Cairo University)

Title of Thesis: NUMERICAL SIMULATION OF SMOKE CONTOL IN UNDERGROUND CAR PARK BY JET FAN SYSTEM AND DUCTED SYSTEM

Key Words: (Smoke Control-Jet fans- Ducted Exhaust system –

Underground car park-FDS)

Summary:

The present work is a numerical simulation for smoke control in underground car park, simulation cases investigation aims to reach the proposed values of human visibility, air temperature, and air velocity by using the impulse ventilation system, and the ductwork system, taking into consideration several proposed designs of the IVS and ducted system by using a CFD software FDS Version 6.4.0. In the underground car park to examine the best performance of smoke extraction system, the present work contains nine cases of smoke control in the underground car park, by comparing the results with the requirements of the life safety, and smoke extraction patterns.

ACKNOWLEDGEMENT

I would like to express my sincere appreciation and infinite thanks to **Prof. Dr. Essam E. Khalil, Dr. Taher Mohamed, and Dr. Ahmed El Degwy** professor and assistant professors of mechanical power - faculty of engineering - Cairo University, for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with up to date technical references that were of great help in the present work. Besides, who gave me a great scientific support and guidance to make a progress in my research.

In addition, I would like to thank my family members is thanking and appreciating for their magnificent rule of supporting and encouraging me to go ahead in the right way of progress and success.

Finally, I cannot forget the support of my colleagues in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

TABLE OF CONTENTS

Chapter 1	Introduction	1
1.1 Introduc	ction	1
1.2 The Imp	portance of Ventilation	1
1.2.1 Pollut	tion in the Underground Car Park	2
1.2.2 Fire S	moke in the Underground Car Park	3
1.2.3 Smok	e Inhalation in the Underground Car Park	3
1.2.4 Flasho	over in the Underground Car Park	3
1.2.5 Backo	draft in the Underground Car Park	3
	e Clearance in the Underground Car Park	
	Exhaust in the Underground Car Park	
_	ance Criteria of Smoke Control in underground car park	
	al Ventilation for the Underground Car Park	
	al & Mechanical Ventilation for the Underground Car Park	
	anical Ventilation for the Underground Car Park	
	System Ventilation System for the Underground Car Park	
	s Systems Ventilation System for the Underground Car Park	
	ns Description	
	ing Principle of Jet Fan	
	tion of Jet Fan (Axial or Centrifugal)	
	s of Jet Fan Ventilation System over Ducted Ventilation System	
	of the Underground Car Park	
_	p a Control Philosophy of the Underground Car Park	
	odelling and Smoke Control in the Underground Car Park	
	Energy Saving Is Achieved In Ductless Ventilation	
	rotection of Car Parks	
	tion Using Sprinkler Systems	
	antages of Sprinkler Systems	
	ection with Special Ventilation Systems Combined with Electr	
	etection Systems	
	ection and Location of Fire	
	uality and Pollution in the Underground Car Parks	
	gn Considerations for the Underground Car Park	
	itoring and Control for the Ventilation System in the Undergro	
Car Pa	rk ıy Air in Car Parks	14 1 <i>1</i>
_	nce Of Operation Of Car Park Ventilation Using Jet Fans em operation and control	
	nal Mode Ventilation Carbon Monoxide Control	
	Mode Ventilation Smoke Control	
	tilation Requirements and Regulations of the Underground Car	
	intry	
	Literature Review	
_	ction	
	k Ventilation Requirements and Jet Fans Distribution	
2.2 Cai Fai.	k veninanon Requirements and Jet Pans Distribution	10

2.3 Car Park Zoning And Fire Scenarios	21
2.4 Temperature, Visibility and Velocity Contours in the Car Park	26
2.5 Fire Scenarios and the effect of firefighting sprinkler system	30
2.7 Conclusion of Previous Work and Present Work	
2.8 Scope of the Present Work	44
Chapter 3 CFD Governing Equations & Models	45
3.1 Introduction	
3.1.1 Description of FDS	45
3.1.2 Hydrodynamic Model	45
3.1.3 Combustion Model	45
3.1.4 Radiation Transport	46
3.2 Governing Equations	46
3.2.1 Mass and Species Transport	46
3.2.2 Momentum Transport	46
3.2.3 Energy Transport	47
3.2.4 Equation of State	47
3.3 Visibility Model	
3.4 Large Eddy Simulation (LES)	
3.5 Evacuation of Agents	
3.5.1 Human Movement Model	
3.5.2 Fire and Human Interaction	
3.6 Combustion (Mixture Fraction Model)	
3.7 Radiation (Radiation Transport Equation)	
3.8 The Heat Conduction Equation for a Solid	
3.9 Radiation Heat Transfer to Solids	
3.10 Convective Heat Transfer to Solids	
Chapter 4 Validation and Assessment	
4.1 Introduction	
4.2 Validation of FDS and grid sensitivity analysis	
4.2.1 Apparatus	
4.2.1.1 Fire source Heat Release Rate	
4.2.1.2 Ceiling Jet Temperature Measurements	
4.2.1.3 Smoke Layer Interface Height	
4.2.1.4 Smoke Exhaust Fans	
4.2.2 Validation and Grid Sensitivity`	
4.1.2.1 Computational Domain	
4.2.2.2 FDS Simulation Results	
4.3 Grid Selection for the Underground Car Park	
4.7 Description of the Underground Car Park Space Dimension	
4.8. Car fire Heat Release Rate and Burning Material	
4.9.0 Impulse Ventilation System Description	
4.9.1 IVS System Fresh Air Supply	
4.9.2 IVS System Smoke Extraction	
4.9.3 IVS System Jet Fans	
4.10 Ducted System Description	
4.10.1 Ducted System Fresh Air Supply	04

4.10.2 Ducted System Smoke Extraction	. 64
4.11 Simulation Cases	. 64
Chapter 5 Results and Discussions	. 67
5.1 Introduction	
5.2 Presentation for Each Individual Configuration	. 67
5.10 Procedure of Unsteady State Results Presentation	. 67
5.3 Results of Configurations Considered	
5.3.1 Results of Effect of Smoke Dispersion of the Car Park	. 68
5.3.1.1 Effect of Smoke Dispersion Car Fire at the Middle (Case 1)	. 69
5.3.1.2 Effect of Smoke Dispersion Car Fire at the Middle (Case 2)	. 70
5.3.1.3 Effect of Smoke Dispersion Car Fire at the Middle (Case 3)	.71
5.3.1.4 Effect of Smoke Dispersion Car Fire at the North Direction (Case 4)	. 72
5.3.1.5 Effect of Smoke Dispersion Car Fire at the North Direction (Case 5)	. 73
5.3.1.6 Effect of Smoke Dispersion Car Fire at the North Direction (Case 6)	. 74
5.3.1.7 Effect of Smoke Dispersion Car Fire at the South Direction (Case 7)	. 75
5.3.1.8 Effect of Smoke Dispersion Car Fire at the South Direction (Case 8)	
5.3.1.9 Effect of Smoke Dispersion Car Fire at the South Direction (Case 9)	. 77
5.3.2 Results of visibility at human level (1.8 m) of the Car Park	
5.3.2.1 Visibility contours at $z = 1.8$ m Car Fire at the Middle (Case 1)	
5.3.2.2 Visibility contours at $z = 1.8$ m Car Fire at the Middle (Case 2)	
5.3.2.3 Visibility contours at $z = 1.8$ m Car Fire at the Middle (Case 3)	
5.3.2.4 Visibility contours at z = 1.8 m Car Fire at North Direction (Case 4)	
5.3.2.5 Visibility contours at $z = 1.8$ m Car Fire at North Direction (Case 5)	
5.3.2.6 Visibility contours at $z = 1.8$ m Car Fire at North Direction (Case 6)	
5.3.2.7 Visibility contours at $z = 1.8$ m Car Fire at South Direction (Case 7)	
5.3.2.8 Visibility contours at $z = 1.8$ m Car Fire at South Direction (Case 8)	
5.3.2.9 Visibility contours at z = 1.8 m Car Fire at South Direction (Case 9)	
5.3.3 Results of velocity at fan level (2.7 m) of the Car Park	
5.3.3.1 Velocity contours at Z = 2.7 m Car Fire at the Middle (Case 1)	
5.3.3.2 Velocity contours at z=2.7 m Car Fire at the Middle (Case 2)	
5.3.3.3 Velocity contours at z=2.7 m Car Fire at the Middle (Case 3)	
5.3.3.4 Velocity contours at z=2.7 m Car Fire at North Direction (Case 4)	
5.3.3.5 Velocity contours at z=2.7 m Car Fire at North Direction (Case 5)	
5.3.3.6 Velocity contours at z=2.7 m Car Fire at North Direction (Case 6)	
5.3.3.7 Velocity contours at z=2.7 m Car Fire at South Direction (Case 7)	
5.3.3.8 Velocity contours at z=2.7 m Car Fire at South Direction (Case 8)	
5.3.3.9 Velocity contours at z=2.7 m Car Fire at South Direction (Case 9)	
5.3.4 Results of velocity at human level (1.8 m) of the Car Park	
5.3.4.1 Velocity contours at z=1.8 m Car Fire at the Middle (Case 1)	
5.3.4.2 Velocity contours at z=1.8 m Car Fire at the Middle (Case 2)	
· · · · · · · · · · · · · · · · · · ·	
5.3.4.4 Velocity contours at z=1.8 m Car Fire at North Direction (Case 4) 5.3.4.5 Velocity contours at z=1.8 m Car Fire at North Direction (Case 5)	
5.3.4.5 Velocity contours at z=1.8 in Car Fire at North Direction (Case 5) 5.3.4.6 Velocity contours at z=1.8 m Car Fire at North Direction (Case 6)	
5.3.4.7 Velocity contours at z=1.8 m Car Fire at North Direction (Case 7)	
5.3.4.8 Velocity contours at z=1.8 m Car Fire at South Direction (Case 8)	

5.3.4.9 Velocity contours at z=1.8 m Car Fire at South Direction (Case 9) 98
5.3.5 Results of backlayering at jet fan level (2.7 m) of the Car Park
5.3.5.1 Backlayering U-Velocity contours at $z = 2.7$ m Car Fire at the Middle
(Case 2)
5.3.5.2 Backlayering U-Velocity contours at $z = 2.7$ m Car Fire at the Middle
(Case 3)
(Case 3)
(Case 5)101
5.3.5.4 Backlayering U-Velocity contours at $z = 2.7$ m Car Fire at the Middle
(Case 6)101
(Case 6)
Direction (Case 8)
5.3.5.6 Backlayering U-Velocity contours at $z = 2.7$ m Car Fire at the South
Direction (Case 9)102
5.3.6 Results of Temperature at Jet Human Level (1.8 M) of the Car Park 103
5.3.6.1 Temperature contours at $z = 1.8$ m Car Fire at the Middle (Case 1) 10 ²
5.3.6.2 Temperature contours at $z = 1.8$ m Car Fire at the Middle (Case 2) 105
5.3.6.3 Temperature contours at $z = 1.8$ m Car Fire at the Middle (Case 3) 106
5.3.6.4 Temperature contours at $z = 1.8$ m Car Fire at the North Direction (Case
4)107
5.3.6.5 Temperature contours at $z = 1.8$ m Car Fire at the North Direction (Case
5)108
5.3.6.6 Temperature contours at $z = 1.8$ m Car Fire at the North Direction (Case
6)109
5.3.6.7 Temperature contours at $z = 1.8$ m Car Fire at the South Direction (Case
7)110
.3.6.8 Temperature contours at $z = 1.8$ m Car Fire at the South Direction (Case 8)
111
5.3.6.9 Temperature contours at $z = 1.8$ m Car Fire at the South Direction (Case
9)112
5.3.7 Results of Plume Tilt of the Car Park
5.3.7.1 Plume tilt at y= 15.25 m Car Fire at the Middle (Case 1)
5.3.7.2 Plume tilt at y= 15.25 m Car Fire at the Middle (Case 2)
5.3.7.3 Plume tilt at $y=15.25$ m Car Fire at the Middle (Case 3)
5.3.7.4 Plume tilt at $y=24.7$ m Car Fire at the South Direction Case 4
5.3.7.5 Plume tilt at $y=5.25$ m Car Fire at the South Direction Case 5
5.3.7.6 Plume tilt at $y=5.25$ m Car Fire at the South Direction Case 6
5.3.7.7 Plume tilt at $y=24.7$ m Car Fire at the North Direction Case 7 117
5.3.7.8 Plume tilt at $y=24.7$ m Car Fire at the North Direction Case 8
5.3.7.9 Plume tilt at $y=24.7$ m Car Fire at the North Direction Case 9 118
Chapter 6 Conclusions and Recommendations119
6.1 Introduction 119
6.2 General Conclusions
References 120

LIST OF FIGURES

Figure 1.1 Traditional Ducted System, [9].	5
Figure 1.2 Jet fan System, [9].	
Figure 1.3 Control volume for a jet fan.	6
Figure 1.4 Jet Fan Types (Axial or Centrifugal), [9].	7
Figure 1.5 Guidance on Thrust Fan selection and positioning, [10]	8
Figure 1.6 Car Park Zoning, [9]	9
Figure 2.1 Velocity Contour at 3 m and 1.7 m, [13]	18
Figure 2.2 LMA Contour at 3 m from the Floor, [13]	18
Figure 2.3 Heat Release Rate for a Single Car Fire, [15].	20
Figure 2.4 Heat Release Rate, [15].	
Figure 2.5 Zoning of the Car Park, [17]	
Figure 2.6 Calculation Domain Used In the Simulations, [17]	
Figure 2.7 Comparison of the Predicted Velocities with the Experimental Va	
for Fire Detection Zone 1, [17]	23
Figure 2.8 Comparison of the Predicted Velocities with the Experimental	
Values for Fire Detection Zone 2, [17].	
Figure 2.9 Comparison of the Predicted Velocities with the Experimental Va	
for Fire Detection Zone 3, [17]	24
Figure 2.10 Simulations With Heat Source, Position of the Source and	
Respective Results of the Temperature Fields for Fire Detection 1, [17]	24
Figure 2.11 Simulations With Heat Source, Position of the Source and	2.5
Respective Results of the Temperature Fields for Fire Detection 1, [17].	25
Figure 2.12 Simulations With Heat Source, Position of the Source and	2
Respective Results of the Temperature Fields for Fire Detection 2, and	
[17]	
Figure 2.13 Visibility Contours for Case 1 and Case 2, [18]	
Figure 2.14 Temperature Field for Case 1 and Case 2, [18]	
Figure 2.15 Velocity Field for Case 1 and Case 2, [18].	
Figure 2.16 U-Velocity Field for Case 1 and Case 2, [18].	
Figure 2.17 Plume Tilt for Case 1 and Case 2, [18].	20
Figure 2.18 Cark Park Geometry and Dimensions (In Meters) Showing the	
Location of the Supply, Exhaust and Jet Fans As Well As the Source of	
Fire, [19]	
Figure 2.20 Temperature Distribution in the Car Park Ceiling at 240 S for th Two Cases, [23]	
Figure 2.21 Activated Sprinklers of Simulation for The Two Cases, [23]	
Figure 2.22 The calculation domain used by Viegas [25]	
Figure 2.23 Horizontal cross section at z=2.01 m for u velocity field for I90,	
[25]	
Figure 2.24 : v component of velocity for simulations I77 and I90	
Figure 2.25 u velocity and temperature for simulations I91 and I93	
Figure 2.26 u velocity and temperature for simulations I93 and I95	