Clinical Significance of Serum Pigment Epithelium Derived Factor in Patients with Diabetic Retinopathy

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Mohamed Abdel Wahed Beshir

M.B., B.Ch., Ain Shams University

Under Supervision of

Prof. Dr./ Dalia Helmy Farag

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Prof. Dr./ Manal Mohamed Abd Al Aziz

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Dr./ Hala Abdel Al Ahmed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2011

الأهمية الإكلينيكية للعامل المُستمد من الظهارة الملونة في مرضى إعتلال الشبكية السكرى الملاء

توطئة للحصول على درجة الماجستير في الباثولوچيا الإكلينيكية و الكيميائية مقدمة من

الطبيب/ محمد عبد الواحد بشير

بكالوريوس الطب و الجراحة العامة - كلية الطب جامعة عين شمس تحت إشراف

الأستاذ الدكتور/ داليا حلمى فرج

أستاذ الباثولوچيا الإكلينيكية و الكيميائية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ منال محمد عبد العزيز

أستاذ الباثولوچيا الإكلينيكية و الكيميائية كلية الطب – جامعة عين شمس

الدكتور/ هالة عبد العال أحمد

مدرس الباثولوچيا الإكلينيكية و الكيميائية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

Summary and Conclusion

Diabetic retinopathy, a serious microvascular complication of DM, remains one of the leading causes of blindness throughout the world. It is characterized by microvascular damage and capillary non-perfusion resulting in retinal angiogenesis.

Pigment epithelium-derived factor (PEDF), a 50-kDa protein is a member of the serine protease inhibitor (serpin) family PEDF was first identified in the conditioned-medium of cultured human retinal pigment epithelial cells. It inhibits retinal endothelial cell growth, migration and suppresses ischemia-induced retinal neovascularization.

The aim of this work was to study the clinical significance of serum PEDF in patients with diabetes mellitus and its relevance of PEDF to the progression of diabetic retinopathy.

The present study was conducted on 60 diabetic patients who were recruited from the Ophthalmology Department at Ain Shams University Hospitals. The patients' group was divided according to the international severity scale into 4 subgroups; non-apparent diabetic retinopathy, mild-to-moderate non-proliferative, severe non-proliferative, proliferative diabetic retinopathy, each subgroup included 15 patients. Healthy control group included 20 healthy subjects.

List of Abbreviations

4-AAP : 4-aminoantipyrine

ACE : Angiotensin converting enzyme

AGE_S : Advanced glycation end products

ANG II : Angiotensin II

ANOVA : Analysis of variation

AR : Aldose reductase

Asp : Aspartic acid

ATGL : Adipose triglyceride lipase

ATP : Adenosine tri-phosphate

AUC : Area under curve

bFGF : basic fibroblast growth factor

BRB : Blood retinal barrier

CE : Cholesterol esterase

CO : Cholesterol oxidase

CTGF : Connective tissue growth factor

DAG : Diacylglycerol

DHAP : Dihydroxyacetone phosphate

DHBS : Dichloro-hydroxy benzene sulfonic acid

DM : Diabetes Mellitus

DME : Diabetic macular edema

DR : Diabetic retinopathy

ECM : Extracellular matrix

EC_s : Endothelial cells

ELISA : Enzyme linked immunosorbent assay

eNOS : endothelial nitric oxide synthase

ERG : Electroretinogram

FA : Fluorescein angiography

FasL : Fas ligand

FGFR : FGF receptor

FN : False negative

FP : False positive

GAPDH : Glyceraldehyde 3-phosphate

dehydrogenase

GFAT : Glutamine fructose-6-phosphate

amidotransferase

GK : Glycerol kinase

Gln : Glutamine

Glu : Glucose

GLUT1 : Glucose transporter 1

GPO : Glycero-phosphate oxidase

HA : Hyaluronan

HBA_{1C} : Glycated hemoglobin

HDL-C : High density lipoproteins cholesterol

HRP : Horseradish peroxidase

HSPGs : Heparin sulphate proteoglycans

HUVECs : Human umbilical vein endothelial cells

Ia : Non apparent diabetic retinopathyIb : Mild-to-moderate non proliferative

diabetic retinopathy

Ic : Severe non proliferative diabetic

retinopathy

ICAM-1 : Intracellular adhesion molecule-1

Id : Proliferative diabetic retinopathy

IGF-1 : Insulin-like growth factor -1

IGF-1R : IGF-1 receptor

IPF : Idiopathic pulmonary fibrosis

IRMA : Intraretinal microvascular abnormalities

LDL-C : Low density lipoproteins cholesterol

MAP : Mitogen activated protein

MMP_s : Matrix metalloproteinases

MNPDR : Mild-to-moderate non proliferative

diabetic retinopathy

NADP : Nicotinamide adenine dinucleotide

phosphate

NADPH : The reduced form of NADP

NF-kB : Nuclear factor kappa-light-chain-enhancer

of activated B cells

NPDR : Non Proliferative diabetic retinopathy

NPV : Negative predictive value

OCT : Optical coherence tomography

O-GlcNAc : O-linked N-acetyl glucosamine

OGT : O-linked N-acetyl glucosamine GlcNAc

transferase

PA-1 : Plasminogen activator -1

PAI-1 : Plasminogen activator inhibitor – 1

PDGF : Platelet-derived growth factor

PDR : Proliferative diabetic retinopathy
PEDF : Pigment epithelium derived factor

PKC : Protein kinase C

PIGF : Placental growth factor

PPV : Positive predictive value

Pro : Prolene

PVDF : Polyvinylidene fluoride

QC : Quality controls

RAGE : Receptor for AGE

RAS : Renin angiotensin system

RCL : Reactive central loop

RGCs : Retinal ganglion cells

ROC : Receiver operating characteristic

ROS : Reactive oxygen species

ROS : Reactive oxygen species

RPE : Retinal pigment epithelium

SD : Standard deviation

Serpin : Serine protease inhibitor

SNPDR : Severe non proliferative diabetic

retinopathy

SOD : Superoxide dismutase

SP1 : Specificity protein 1

SPSS : Statistical program for social science

T1DM : Type 1 diabetes mellitus

T2DM: Type 2 diabetes mellitus

TC : Total cholesterol

TG : Triglycerides

TGF- β : Transforming growth factor- β

TN : True negative

TP : True positive

UDP-GlcNAc : Uridine diphosphate N-acetyl glucosamine

UPA : Urokinase-type plasminogen activator

VCAM-1 : Vascular cell adhesion molecule-1

VEGF: : Vascular endothelial growth factor

VEGFR : VEGF receptor

VLDL : Very Low density lipoproteins

List of Tables

table	Title	Page
1	International Clinical Diabetic Retinopathy	8
	Disease Severity Scale	
2	Descriptive and comparative statistics between	76
	studied groups as regards demographic data	
3	Statistical comparison between studied groups	77
	as regards the duration of the disease using	
	Student t-test	
4	Descriptive and comparative statistics between	78
	studied groups as regards the studied	
	laboratory tests using ANOVA test	
5	Statistical comparison between studied groups	79
	as regards PEDF using student t-test	
6	Correlation analysis between PEDF and the	81
	different variables in the patients' group (group	
7	Diagnostic performance of PEDF in	85
	discriminating different patients' subgroups	

List of Figures

List of Figures		
Fig.	Title	Page
1	Structure of the retina	6
2	Different lesions found in diabetic retinopathy	9
	disease	
3	The four biochemical pathways that lead to	11
	diabetic retinopathy	
4	Formation of advanced glycation end products	14
5	Activation of PKC	16
6	Hexosamine pathway	18
7	Role of renin angiotensin system in	29
	angiogenesis	
8	Normal fundus by fluorescein angiography	33
9	Microvascular complications in DR by	33
	fluorescein angiography	
10	Mechanism of PEDF anti-tumor activity	51
11	ELISA technique	55
12	Mean of PEDF values in the different studied	80
	groups	
13	ROC curve of PEDF for discrimination of	82
	subgroup non-apparent DR (Ia) from apparent	
	DR (Ib+Ic+Id).	
14	ROC curve of PEDF for discrimination of	83
	subgroup mild-to-moderate NPDR (Ib) from	
	subgroups with intra-ocular hemorrhage	
	(Ic+Id).	
15	ROC curve of PEDF for discrimination of	84
	subgroup NPDR (Ib + Ic) from PDR (Id).	

List of Contents

	Page	
List of abbreviations	I	
List of tables	VI	
List of figures	VII	
Introduction	. 1	
Aim of the work	. 3	
I. Diabetic Retinopathy	4	
II- Pigment Epithelium-Derived Factor (PEDF)	36	
Subjects and Methods	57	
Results	73	
Discussion	86	
Summary & Conclusion	91	
Recommendations	94	
References	95	
Arabic summary		

Thanks are given to **ALLAH** the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **Professor/ Dalia Helmy Farag,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain shams University. I am greatly indebted to her for suggesting and planning the subject, supervising the whole work, reading and criticizing the manuscript. I will never forget her unlimited help, continuous support, kind encouragement, constructive criticism and wise guidance. To her words of praise are not sufficient and I am really greatly indebted to her.

I would like also to express my sincere gratitude and appreciation to **Professor/ Manal Mohamed Abd Al Aziz,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her helpful guidance, valuable advice, meticulous care, great effort and generous help in this work.

I would like to express my deep obligation to **Doctor/ Hala Abdel Al Ahmed,** Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her generous help and support throughout every step in this work.

I would also like to thank **Doctor/Mohamed Hanafy Hashim**, Lecturer of ophthalmology, Faculty of Medicine, Ain

shams University, for his support in the practical part of this work and for his generous help in collection of cases.

Last but not least, I express my love to my parents and appreciate their continuous encouragement and help to me all the time, so I dedicate this work to them.

Introduction

Diabetes mellitus is a chronic metabolic disease, characterized by hyperglycemia (WHO, 2010). The International Diabetes Federation estimates that 285 million people around the world have diabetes. This total number is expected to rise to 438 million within 20 years (International Diabetes Federation, 2010). Diabetic retinopathy, a serious microvascular complication of diabetes remains one of the leading causes of blindness throughout the world. It is characterized by microvascular damage and capillary non-perfusion resulting in retinal angiogenesis (Fu et al., 2010).

Angiogenesis in the retina is a complex multistep process which results in the formation of new vessels due to the imbalance between the angiogenic stimulators and inhibitors. Many endogenous inhibitors including endostatin, angio-statin and pigment epithelium-derived factor (PEDF) have been reported (Noma et al., 2002).

Pigment epithelium-derived factor (PEDF), a 50-kDa protein, is a member of the serine protease inhibitor (serpin) family (Ogata et al., 2007). PEDF was first identified in the conditioned-medium of cultured human retinal pigment epithelial cells, and it inhibits retinal endothelial cell growth, migration and suppresses ischemia-induced retinal neovascularization (Katakami et al., 2008 and Matsuyama et al., 2008).