Newer Tumor Markers in Detection of Colorectal Carcinoma

Thesis Submitted for Fulfillment of MD Degree in Tropical Medicine by

MAALI MOHAMED EZZAT

(MB.B.Ch, M.Sc. Tropical Medicine)

SUPERVISORS

PROF. DR. MOHAMED SERAG ELDEEN ZAKARIA

Professor of Tropical Medicine

Faculty of Medicine – Cairo University

PROF. DR. ABD ELRAHMAN NABAWY ZEKRY

Professor of Molecular biology and virology National Cancer Institute – Cairo University

DR. TAMER MAHMOUD ELBAZ

Lecturer of Tropical Medicine

Faculty of Medicine – Cairo University

Faculty of Medicine Cairo University 2012

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignant neoplasms in Egypt. Adenomatous polyps and inflammatory bowel diseases (IBD) are considered the commonest pre-malignant lesions for CRC. Adipocytokines (Adiponectin, Resistin and Visfatin) are promising markers that may play a role in early detection of CRC.

<u>Aim of work:</u> to assess levels of Adiponectin, Resistin and Visfatin in pre-malignant & malignant colorectal lesions.

<u>Patients and methods</u>: 114 patients were studied and divided into 4groups; CRC group (34 patients), IBD group (24 patients), colonic polyps group (27 patients) and control group (29 patients) (patients with different indications for colonoscopy and showed negative full colonoscopic examination) by measuring levels of Adiponectin, Resistin and Visfatin in each patient of each group using ELISA technique.

Results: Adiponectin is increased in CRC group rather than other 3 studied groups and its level decreased in IBD than polyp, Visfatin is significantly higher in control group than the other 2 groups (benign and CRC) and it increased in IBD than Polyp with inverse relation with stage of CRC. Resistin level has no significance in CRC group but it increased in IBD than polyp groups and it has direct relation with CRC staging.

Conclusion: Adiponectin and Visfatin are good biomarker in early detection of CRC while Resistin is good biomarker in premalignant lesion and progression of CRC.

Key words: Adiponectin- Resistin – Visfatin – Colorectal cancer – Premalignant lesion.

Acknowledgement

First of all, Thanks to GOD, without his will, nothing could have been achieved.

My gratitude goes to **Prof. Dr. Serag Zakareia** Professor of Tropical Medicine, Cairo University, for his support, endless advices and help and for being a great father and prof.

My deep thanks and appreciation to **Dr.Tamer Elbaz**, Lecturer of Tropical Medicine, Cairo University, for his strict supervision and revision of this work, generous help and his valuable comments to complete this work properly.

I would like to thank **Prof. Dr. Abd Elrahman Zekri** Professor of Molecular Biology and Immunology, National Cancer Institute, Cairo University and **his team** for their perfect work and their time and effort consumed to perform this work,

I would like also to acknowledge the magnificent help and support of all the members of endoscopy unit doctors and nurses for completing this work and for the facilities they gave to me to perform this work with deep thanks to **Prof.Dr. Ayman Yosry** for give me the opportunity to complete my work

To all members of Egypt Air hospital, especially gastroenterology and endoscopy unit and all my professors, colleagues and nurses staff to whom I have the honor to belong.

Special appreciation goes to **Prof. Dr.Jean Francois Rey** Professor of gastroenterology and endoscopy, A-T Institute, Nice, France for his encouragement and advice.

I would like to thanks my family for their endless support and care for my whole life. They were always helping and encouraging me to continue and finish this work. I really owe to them so much.

Last, but certainly not least, I owe to my patients included in this study and to all our Kasr El-Aini and Egypt Air hospital patients my own life. May God alleviate their sufferings and may all our efforts be just for their own benefit.

TABLE OF CONTENTS

Introduction and aim of the work 1
Review of literature
• <u>Chapter I</u> : Colorectal cancer 5
• Chapter II: Adiocytokines and Colorectal
Cancer 60
Patients and Methods 77
Results 90
Discussion 109
Summary and Conclusions 119
Recommendations 121
References 122
الملخص العربي

List of Tables

Table I	Association between family history of cancer and risk of colorectal cancer	12
Table II	Modified Dukes Staging System	24
Table III	TNM Staging System (Tumor, Node, Metastasis)	25
Table IV	American Cancer Society Guidelines on Screening and Surveillance for the Early Detection of Colorectal Adenomas	31
Table V	Proposed criteria of inherited colon cancer syndromes	37
Table VI	Risk factors for cancer in colitis	40
Table VII	Markers of malignant transformation and progression in IBD	43
Table VIII	CRC Screening and Surveillance Recommendations in UC	47
Table IX	ACG guidelines CRC screening recommendations	57
Table 1	Age of the studied patients	91

Table 2	Sex distribution of the studied patients	91
Table 3	Clinical presentations of the studied patients	92
Table 4	Laboratory data of the studied patients	93
Table 5	Stool examination of the studied patients	94
Table 6	Site and gross picture of the lesions in the studied groups	95
Table 7	Comparison between tumor markers (CEA and CA19.9) and Adipocytokines (Adiponectin , Visfatin and Resistin) among Benign, CRC and Control groups	100
Table 8	Comparison between IBD and polyp groups	105
Table 9	Comparison between adenomatous and hyperplastic polyps	107
Table 10	Non parameteric Correlation of markers in relation to CRC stage	108

List of Figures

Figure I	World incidence and mortality of colorectal cancer	9
Figure II	Proposed genetic paradigm of colorectal cancer development	18
Figure III	Pathways involved in the molecular pathogenesis of CRC	20
Figure IV	Fungating mass of the sigmoid colon with necrotic areas	23
Figure V	Malignant ulcer of the transverse colon	23
Figure VI	large pedunculated adenomatous polyp	29
Figure VII	Endoscopic Image of Sessile Tubulovillous Adenoma using magnifying chromo-endoscopy	29
Figure VIII	High-resolution video colonoscopy and chromoscopy	30
Figure IX	Categories of Colorectal Cancer Syndromes	32
Figure X	Adenomatous polyposis of the colon	35
Figure XI	Severe extensive form of ulcerative colitis	41
Figure XII	Crohn's disease with aphthoid and rail-way ulcers	41
Figure XIV	Adiponectin and its signalling pathways	62

Figure XV	Cell types involved in adipose tissue and inflammation	62
Figure XVI	Adiponectin receptor expression is higher in cancerous that in normal tissue	66
Figure XVII	picture of Resistin nd Visfatin	67
Figure XVIII	Mechanism of action of resistin and visfatin	68
Figure XIX	Immunohistochemical detection of leptin expression in colorectal mucosa, adenoma and colorectal cancer.	76
Figure 1	Site of the colonic lesions of the studied patients	96
Figure 2	Type of the colonic lesions of the studied patients	96
Figure 3	Case of malignant rectal mass	97
Figure 4	Case of sigmoid adenomatous polyp	98
Figure 5	Case of ulcerative colitis with rectal involvement	98
Figure 6	Classification of studied groups for detection of Adipocytokines	99
Figure 7	Expression of Adiponectin and CEA in CRC, Benign and Control groups	101

Figure 8	Expression of Adiponectin and CA19.9 in CRC , Benign and Control groups	101
Figure 9	Expression of Visfatin in CRC , Benign and Control groups	102
Figure 10	Expression of Resistin in CRC ,Benign and control groups	102
Figure 11	ROC curves for CEA (benign vs malignant)	103
Figure 12	Roc curve for Ca19.9	103
Figure 13	ROC curve for Adiponectin	104
Figure 14	ROC curve for Visfatin	104
Figure 15	ROC curve for Resistin	105
Figure 16	Adiponectin level in IBD and Polyp groups	106
Figure 17	Resistin level in IBD and Polyp groups	106
Figure 18	Visfatin level in IBD and Polyp groups	107

LIST OF ABBREVIATIONS

- ACF: Aberrant crypt foci
- ACG: American collage of gastroenterology
- **AF**: activation functions
- AFAP: attenuated familial adenomatous polyposis
- AJCC: American joint committee on cancer
- APC: attenuated adenomatous polyposis coli
- **5-ASA**: 5-aminosalicylic acid
- **CBC**: Complete blood count
- CD: Crohn's disease
- **CE**: contrast enhancement
- **CEA**: carcinoembryonic antigen
- CIN: chromosomal instability
- CRC: colorectal cancer
- CT: computerized tomography
- DALM: dysplasia-associated lesions or masses
- DCBE: double contrast barium enema
- **DBD**: DNA binding domains
- DCC gene: deleted in colon cancer
- **ESR**: erythrocyte sedimentation rate
- **FAP**: familial adenomatous polyposis
- FCC: familial colorectal cancer
- **FGF**:F Growth Factor
- **FIT**: fetal immunohistochemical staining
- **FOBT**: fecal occult blood testing

• **GBP28**: gelatin-binding protein-28

• GIT: gastrointestinal tract

• HNPCC: hereditary non polyposis colorectal cancer

• **IBS**: irritable bowel syndrome

• IL: interleukin

• IGFBP: insulin-like growth factor binding protein

• MSI: microsatellite instability

• NBI: Narrow Band Imaging

• NCI: national cancer institute

• NHL: non Hodgkin lymphoma

• NO: nitrous oxide

• **NSAIDs**: non steroidal anti-inflammatory drugs

• **PBEF**: pre-B cell colony-enhancing factor

• **PJS**: Peutz–Jeghers syndrome

• **SE**: surface enhancement

• STAT: signal transducer and activator of transcription

• **SOCS**: suppressors of cytokine signaling

• UC: ulcerative colitis

• **T2D**: Type 2 Diabetes

• **TE**: tone enhancement

• TNF: tumour necrotic factor

• TSG: tumour suppressor gene

• WHI: Women's Health Initiative

• WHO: World heath organization

INTRODUCTION

Colorectal cancer (CRC) is considered the fourth most commonly diagnosed cancer and the second leading cause of cancer- related deaths in the United States. More than 50,000 die from CRC annually accounting for approximately 10% of all cancer deaths. Each year, approximately 140,000 individuals are diagnosed with CRC (*Jemal et al.*, 2005).

In Egypt, colorectal carcinoma is one of the most common malignant neoplasms (*Zalata et al., 2000*). According to National Cancer Institute (NCI) statistics, in males CRC ranks the sixth most common cancer after bladder, liver, Non Hodgkin Lymphoma (NHL), lung and leukemia, while in females it ranks the fifth common cancer after breast, Non Hodgkin Lymphoma (NHL), leukemia and liver cancer. The median age of CRC cases in Egypt is 48 years for both males and females (*Elattar, 2005*).

Unlike western countries - where CRC is prevalent among elderly people, 35% of the Egyptian patients with CRC are under 40 years of age. Also, the histopathological criteria and the mutational profile of the tumors diagnosed in Egypt are different from those of the western countries. In general, they are of high histological grade and stage and they carry more mutations (*Bahnassy et al.*, 2002).

Many risk factors for CRC development have been incriminated, including environmental and genetic factors. Although inherited susceptibility results in the most striking increases in risk, the majority of CRCs are sporadic rather than familial (*Wei et al.*, 2004).

Colon cancer screening used to identify individuals at an early stage, has improved outcome. Recent decreases in rates of death from colorectal cancer indicate that screening methods such as Colonoscopy techniques, technologies, and quality control measures have advanced to improve detection, classification, and removal of early neoplasias (Wallace and Kiesslich, 2010).

Image enhancement methods such as chromoendoscopy and its modalities, such as "digital" chromoendoscopy also Ultra-high magnification systems, including optical magnification and confocal endomicroscopy and I-scan technology that consisted of three types of algorithms: surface enhancement (SE), contrast enhancement (CE), and tone enhancement (TE) all are designed to enhance minute mucosal structures (*Kodashima et al.*, 2010 and Wallace et al., 2010)

Discovery of novel markers that is highly specific and sensitive will also improve strategies for the management of cancer by facilitating a rapid determination of tumor responses to novel therapies. A variety of noninvasive molecular approaches to colorectal cancer screening are emerging with potential to improve screening effectiveness. These approaches are based on the sensitive assay of molecular markers in stool, blood. New methods have been shown to detect both colorectal cancers and precancerous lesions with high accuracy (*Ahlquist*, 2010).

Detection of DNA molecular markers in serum is an exciting new technology that shows increasing promise as a way to screen colorectal cancer. Detecting premalignant adenoma is the key target of any approach of screenings which aim at preventing colorectal cancer. In this point, serum DNA testing with molecular markers has shown to be superior to fecal occult blood testing for adenoma detection (*An SW et al.*, 2009).

There are many new approaches in the development of high-performance molecular markers that are ideal screening tools being sensitive, specific, and cost-effective. Individuals with a positive serum DNA test are referred for colonoscopy. Ultimately, introduction of new serum-based DNA test with a panel of molecular markers is expected to encourage participation in screening program of colorectal cancer (*An SW et al.*, 2009).

Adipocytokines are serum markers which are adipocyte-secreted hormones associated with some malignancies such as colorectal, breast, and prostate cancer. Adipocytokines measured by blood levels of adiponectin, leptin, resistin, visfatin, and C-peptide. Resistin and visfatin may be good biomarkers of colorectal malignant potential and stage progression. Adiponectin level may be a good biomarker of colorectal adenoma (*Nakajima et al.*, 2010).