Oral Rapid Dissolving Films as Delivery Systems for Cetirizine hydrochloride

A Thesis submitted in partial fulfillment of the requirements for the Master

Degree of Pharmaceutical Sciences (Pharmaceutics)

By

Mona Ahmed Abdel Aziz Hachem El Habak

Bachelor of Pharmaceutical Science, June 2001, Ain Shams University

Under the supervision of

Prof. Dr. Nahed Daoud Mortada

Professor of pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Prof. Dr. Gehanne Awad

Professor of pharmaceutics and Industrial Pharmacy
Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy,
Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy

Cairo, 2012

أغشية سريعة الذوبان فى الفم كأنظمة توصيل للسيتيريزين هيدروكلوريد

الرسالة مقدمة من منى منى أحمد عبد العزيز هاشم الحباك بكالوريوس العلوم الصيدلية ٢٠٠١، جامعة عين شمس

للاستيفاء الجزئى لمتطلبات الحصول على درجة الماجستير للعلوم الصيدلية (صيدلانيات)

تحت اشراف كل من

أ.د ناهد داوود مرتضى أستاذ بقسم الصيدلانيات والصيدلة الصناعية كلية الصيدلة جامعة عين شمس

أ.د جيهان عوض أستاذ بقسم الصيدلانيات والصيدلة الصناعية كلية الصيدلة جامعة عين شمس

كلية الصيدلة جامعة عين شمس قسم الصيدلانيات والصيدلة الصناعية القاهرة ۲۰۱۲

Abstract

<u>Author</u>: Mona A. Elhabak, Bioequivalence center manager, MSA university.

Cetirizine (CTZ) rapid dissolving films were prepared by solvent casting method. For masking the bitter taste of CTZ, a drug resinate complex using cation exchange resin amberlite IRP 64 in the ratio 1: 3 (drug to resin) was prepared using batch process method. Taste masked CTZ resin complex powder was subjected for taste evaluation, FTIR spectroscopy, differential scanning calorimetery (DSC), X ray diffraction analysis (XRD), drug content determination and in vitro drug release.

A 2 X 3 X 6 full factorial design was built up for the preparation of optimized rapid dissolving film formula. The factors were the plasticizer type at 3 levels, viz 10% w/w of each of polyethylene glycol 400 (PEG 400), propylene glycol (PG) and glycerin, the film forming material (polymer) concentration at 2 levels: 1 and 2% w/v and the polymer type at 6 levels, viz hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose HPC, HPMC/HPC (1:1 w/w), HPMC/sodium carboxymethyl cellulose (Na CMC) (1:1 w/w), HPC/Na CMC (1:1 w/w) & HPMC/HPC/Na CMC (1:1:1 w/w). The responses measured were: tensile strength, folding endurance and in vitro and in vivo disintegration. To improve the film characteristics, various concentrations: 10, 30 and 60 % (w/w of dry polymer) of the best plasticizer were tried against the chosen polymer. Finally and for further optimization, the effect of disintegrants such as sodium starch glycollate and croscarmellose sodium in three different concentrations: 25, 35 & 45% (w/w of dry polymer) was studied. The visual evaluation, ease of peeling from the plate, thickness, tensile strength measurement, folding endurance, in vitro disintegration

Acknowledgement

First and foremost thanks to **God** by the grace of whom this work was achieved.

I would like to express my deepest appreciation and sincere gratitude to **Prof. Dr. Nahed Daoud Mortada**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her valuable guidance, precious advice and continuous encouragement and help for the accomplishment of this work.

I could never express my gratitude and sincere gratefulness to **Prof. Dr. Gehanne** Awad, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her continuous, instructive guidance and support and great effort she devoted for the completion of this thesis.

I would like also to thanks **dr. Ahmed El Adawi**, ex-head of the board of ERDC Co. for permitting me to do the practical work in the company's labs.

I would like to thank **Dr. Rania** Aziz for her help and support during the practice al work.

I would like to express my deep gratitude to the staff of the material lab in **NODCAR** who helped me to conduct the tensile strength measurements.

Finally, no words could express my gratitude to **my family** for their encouragement and support.

Contents

Item	Page
List of Tables	v
List of Figures	viii
Abstract	xi
General Introduction	1
Scope of Work	9
Chapter I: Preliminary study for the preparation of taste masked cetirizine oral rapid dissolving films	
• Introduction	11
• Experimental	23
• Methodology	25
1. Preparation of the oral films	25
2. Evaluation of the film formers	25
3. Evaluation of the film's excipients	26
4. Taste masking of CTZ	29
4.1. Physiological method	29
4.2. Complexation methods	30
5. Evaluation of the various CTZ systems prepared for taste masking	31
6. Characterization of CTZ resinate complex	32
6.1. FTIR spectroscopy	32
6.2. Differential scanning calorimetery (DSC)	32
6.3. X ray diffraction analysis (XRD)	32
6.4. Drug content determination	32

6.5. In vitro drug release	33
• Results and Discussion	35
Evaluation of the prepared oral films	35
Taste masking of CTZ	37
FTIR spectroscopy	39
Differential scanning calorimetry (DSC)	40
X ray diffraction analysis (XRD)	41
Determination of drug content in CTZ-amberlite complex	42
In vitro drug release from CTZ- amberlite complex	42
• Conclusion	44
Chapter II: Optimization of the formulation of cetirizine-amberlite IRP-64 oral rapid dissolving film	
• Introduction	45
• Experimental	47
• Methodology	49
1. Experimental design	49
2. Evaluation of the prepared CTZ films	51
2.1 Visual evaluation of the films	51
2.2 The stickiness	51
2.3 Thickness	51
2.4 Tensile strength measurement	51
2.5 Folding endurance	52
2.6 <i>In vitro</i> disintegration test	52
2.7 <i>In vivo</i> disintegration test	52
2.8 Taste & Mouth feel evaluation of the prepared CTZ RDFs	52

3. Statistical Data Analysis	53
• Results and discussion	54
Statistical Data Analysis	56
1. Tensile strength Response	60
2. Folding endurance response	64
3. <i>In vitro</i> disintegration time response	70
4. <i>In vivo</i> disintegration response	73
• Conclusion	84
Chapter III: In vivo evaluation and pharmacokinetic study of cetirizine oral rapid dissolving film	
• Introduction	87
• Experimental	90
• Methodology	92
1. Product studied	92
2. Comparative in vitro dissolution study between CTZ RDFs and commercial tablets (Zyrtec®).	
3. Selection of the volunteers	92
4. Preparation of volunteers	93
5. Study Drug Administration	93
6. Withdrawal of Blood Samples	94
7. Determination of cetirizine in human plasma	94
7.1. Chromatographic conditions	95
7.2. Mass Spectrometric conditions	95
7.3 Method validation	95
7.4. Sample preparation	97

8. Data Analysis	97
9. Statistical data analysis	98
• Results and discussion	100
• Conclusion	116
Summary	118
References	131
Arabic summary	

List of Tables

Table no.	Table name	Page
1	Plain films components	27
2	Film composition using physiological method for CTZ taste masking	30
3	Visual inspection of the prepared plain films in the preliminary study	35
4	Effect of different plasticizer types and concentrations on HPMC films' pliability	36
5	Effect of surfactant, disintegrant and saliva stimulating agent on HPMC film properties.	37
6	Evaluation of the taste of CTZ systems treated with taste masking procedures.	38
7	The percent of CTZ released from the CTZ–amberlite complex in 0.1N HCl at different time intervals.	43
8	Factors and levels used in the factorial design.	50
9	The formulae of different CTZ RDFs.	50
10	Visual evaluation and thickness of CTZ RDFs	55
11	Tensile strength, folding endurance, <i>in vitro</i> and <i>in vivo</i> disintegration time responses of CTZ RDFs used in the factorial design.	57
12	ANOVA for the tensile strength of CTZ RDFs according to the factorial design.	61
13	The main effects of different factors on the tensile strength response of CTZ RDFs according to the factorial design.	62
14	The effect of polymer type – polymer concentration interaction on the tensile strength response of CTZ RDFs	63

15	ANOVA for the folding endurance of CTZ RDFs	66
16	The main effects of different factors on the folding endurance response of CTZ RDFs	66
17	The effect of interaction of different factors on the folding endurance response of CTZ RDFs	69
18	ANOVA for <i>in vitro</i> disintegration time of CTZ RDFs	71
19	The main effects of different factors on the <i>in vitro</i> disintegration time response of CTZ RDFs.	72
20	ANOVA for <i>in vivo</i> disintegration time of CTZ RDFs	74
21	The main effects of different factors on the <i>in vivo</i> disintegration time response of CTZ RDFs.	74
22	The effect of polymer conc.—polymer type interaction on the <i>in vivo</i> disintegration time response of CTZ RDFs.	76
23	Mouth feel of CTZ RDFs.	78
24	Physical parameters tested of CTZ RDFs using different glycerol concentrations.	80
25	Tensile strength, folding endurance, <i>in vitro</i> and <i>in vivo</i> disintegration time results of CTZ RDFs using higher glycerol concentrations.	81
26	Mouth feel study of CTZ RDFs using different glycerol concentrations.	82
27	Effect of disintegrant type and concentration on the film properties of the chosen formula.	83
28	Randomization plan.	93
29	Comparative in vitro dissolution study of CTZ RDFs and commercial CTZ (Zyrtec®)	100
30	Relation between CTZ concentrations and the peak area ratio of CTZ / Internal standard in spiked human plasma	103
31	Accuracy and within-day precision of CTZ in plasma.	104
32	Inter-day precision of CTZ in human plasma	104

33	Freeze and thaw stability for CTZ in human plasma	105
34	Plasma concentrations – time data of CTZ (ng/ml) following administration of single oral dose of CTZ 5 mg RDFs to six healthy volunteers	106
35	Plasma concentration – time data of CTZ (ng/ml) following administration of single oral dose of commercial CTZ tablets (Zyrtec® 5 mg F.C tablets) to six healthy volunteers.	106
36	Mean Plasma concentration – time data of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®)	110
37	Pharmacokinetic parameters of CTZ following administration of single oral dose of test product CTZ 5mg RDFs.	111
38	Pharmacokinetic parameters of CTZ following administration of single oral dose of commercial CTZ (Zyrtec® 5 mg F.C tablets).	112
39	Mean values of the pharmacokinetic parameters of CTZ after oral administration of CTZ RDF and commercial CTZ tablets (Zyrtec®)	113
40	Relative bioavailability of CTZ RDF and commercial CTZ tablets (Zyrtec®)	113
41	ANOVA of AUC (0-t).	114
42	ANOVA of AUC (0-∞).	114
43	ANOVA of C _{max} .	115
44	The 90% confidence intervals of the mean values of CTZ after oral administration of CTZ RDF and commercial CTZ tablets (Zyrtec®)	115

List of Figures

Fig. no.	Fig. name	Page
1	FTIR spectrum of CTZ, amberlite IRP-64 and drug resinate complex	40
2	DSC thermograms of CTZl, amberlite IRP-64 and drug resinate complex.	41
3	XRD patterns of CTZ-Cl, amberlite IRP-64 and drug resinate complex.	42
4	The release profile of CTZ released from the CTZ-amberlite IRP-64 complex in 0.1N HCl	43
5	Histogram of the residuals for the tensile strength response.	58
6	Histogram of the residuals for the folding endurance response.	58
7	Histogram of the residuals for the <i>in vitro</i> disintegration response.	59
8	Histogram of the residuals for the <i>in vivo</i> disintegration response.	59
9	Main effects plot for tensile strength according to the factorial design.	62
10	Interaction Plot for tensile strength according to the factorial design.	64
11	Main effects plot for the folding endurance response of CTZ RDFs.	67
12	Interaction plot for the folding endurance response of CTZ RDFs.	70
13	Main effects plot for the <i>in vitro</i> disintegration response of CTZ RDFs.	72
14	Main effects plot for <i>in vivo</i> disintegration time response of CTZ RDFs.	75

15	Interaction plot for the <i>in vivo</i> disintegration time response of CTZ RDFs	76
16	Comparative in vitro dissolution profile of CTZ RDFs and commercial CTZ (Zyrtec®)	100
17	Chromatogram of blank plasma	101
18	Chromatogram of CTZ at precursor-product ion transition m/z 389.3 \rightarrow 201.2.	101
19	Chromatogram of internal standard (tolterodine) at precursor-product ion transition m/z 326 →147	102
20	Calibration curve of CTZ in human plasma	103
21	Plasma concentrations – time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®) for volunteer no. 1	107
22	Plasma concentrations – time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®) for volunteer no. 2	107
23	Plasma concentrations – time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®) for volunteer no. 3	108
24	Plasma concentrations – time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®) for volunteer no. 4	108
25	Plasma concentrations – time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®) for volunteer no. 5	109
26	Plasma concentrations – time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ (Zyrtec ®)	109

	for volunteer no. 6	
27	Mean plasma concentrations –time profiles of CTZ after single oral dose administration of CTZ 5 mg from both treatments: CTZ RDFs and commercial CTZ tablets (Zyrtec ®)	111

Abstract

<u>Author</u>: Mona A. Elhabak, Bioequivalence center manager, MSA university.

Cetirizine (CTZ) rapid dissolving films were prepared by solvent casting method. For masking the bitter taste of CTZ, a drug resinate complex using cation exchange resin amberlite IRP 64 in the ratio 1: 3 (drug to resin) was prepared using batch process method. Taste masked CTZ resin complex powder was subjected for taste evaluation, FTIR spectroscopy, differential scanning calorimetery (DSC), X ray diffraction analysis (XRD), drug content determination and in vitro drug release.

A 2 X 3 X 6 full factorial design was built up for the preparation of optimized rapid dissolving film formula. The factors were the plasticizer type at 3 levels, viz 10% w/w of each of polyethylene glycol 400 (PEG 400), propylene glycol (PG) and glycerin, the film forming material (polymer) concentration at 2 levels: 1 and 2% w/v and the polymer type at 6 levels, viz hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose HPC, HPMC/HPC (1:1 w/w), HPMC/sodium carboxymethyl cellulose (Na CMC) (1:1 w/w), HPC/Na CMC (1:1 w/w) & HPMC/HPC/Na CMC (1:1:1 w/w). The responses measured were: tensile strength, folding endurance and in vitro and in vivo disintegration. To improve the film characteristics, various concentrations: 10, 30 and 60 % (w/w of dry polymer) of the best plasticizer were tried against the chosen polymer. Finally and for further optimization, the effect of disintegrants such as sodium starch glycollate and croscarmellose sodium in three different concentrations: 25, 35 & 45% (w/w of dry polymer) was studied. The visual evaluation, ease of peeling from the plate, thickness, tensile strength measurement, folding endurance, in vitro disintegration