ASSOCIATION BETWEEN MANNOSE-BINDING LECTIN and C-REACTIVE PROTEIN with DIABETIC NEPHROPATHY IN TYPE 1-DIABETES

Thesis

Submitted for the Partial Fulfillment of Master Degree in **Pediatrics**

Presented By

Sara Mohamed Fawzy

M.B.B.CH, Ain shams University (2007)

Under the Supervision of

Prof. Dr. / Mona Hussein El-Samahy

Professor of Pediatrics
Faculty of Medicine - AinShams University

Dr. / Amira Abd Al Monem Adly

Assistant Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. / Eman Abdel Rahman Ismail

Assistant Consultant of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University

2012

العلاقة بين المانوزبيندنج لاكتين و البروتين التفاعلي سى والآعتلال الكلوي السكري بمرض البول السكرى النوع الاول

رسالة توطئة للحصول على درجة الماجستير في طب الاطفال

مقرمه من

الطبيبه/ساره محمد فوزى بكالوريوس الطب والجراحه-جامعة عين شمس ٢٠٠٧

تحت (شرراف

أ.د/مني حسين السماحي

أستاذ طب الاطفال كلية الطب-جامعة عين شمس

د/اميرة عبد المنعم عدلي

استاذ مساعد طب الاطفال كلية الطب-جامعة عين شمس

د/ايمان عبد الرحمن اسماعيل

استشارى مساعد الباثولوجيا الاكلينيكيه كلية الطب-جامعة عين شمس

> گلية (لطب جامعة عين شمس ۲۰۱۲

SUMMARY

ype 1 diabetes mellitus is caused by deficiency of insulin secretion due to pancreatic β-cell damage. It is the most common endocrine-metabolic disorder of childhood and adolescence, with important consequences for physical and emotional development. Diabetes complications represent a huge burden for patient and health services. Diabetic nephropathy is one of the most devastating complications in patients with type 1 diabetes, being the most common cause of end-stage renal failure and the major predictor of premature death.

The fight against each single complication has led to significant improvement in diabetes care, especially for microvascular complications, yet, they remain a major source of morbidity and mortality. A common approach for the prevention and treatment of diabetes complications relies on the understanding of their complex pathophysiology.

It is generally believed that the pathogenesis of diabetic renal disease is multifactorial, and its progression may involve both low-grade inflammation and activation of the complement system. At present, microalbuminuria is considered the best available non-invasive marker for diabetic nephropathy risk. However, some studies have proved it has inadequate specificity and sensitivity. Thus, more investigations into new risk markers are needed.

Before all, Thanks to GOD.

I would like to express my profound gratitude to **Prof. Dr./ Mona Hussein El-Samahy**, Professor of Pediatrics,

Faculty of Medicine, Ain Shams University for her valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.

I am also grateful to **Doctor/ Amira Abd El Moneam Adly**, Assistnat Professor of Pediatrics, Faculty of
Medicine, Ain Shams University for her considerable help and for
the precious time she generously gave me in this work.

My special thanks to **Doctor/Eman Abdel Rahman Ismail**, Assistant Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University for her continuous encouragement and supervision and kind care.

Last but not least, I would like to express my endless gratitude to my dear patients and their parents for their kind cooperation and patience wishing them a good quality of life.

Sara Mohamed Fawzy

LIST OF CONTENTS

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	
Abstract	
Introduction	1
Aim of the Work	3
Review of Literature	
Diabetes mellitus	4
Diabetic nephropathy	34
Mannose-binding lectin (MBL)	75
Subjects and methods	101
Results.	111
Discussion	140
Summary	160
Conclusion	168
Recommendations	169
References	170
Arabic summary	

LIST OF TABLES

Tab. No	. Title	Page No.
Table (1):	Classification of types of DM	5
Table (2):	Types of insulin preparations and suggest action profiles	
Table (3):	The stages of diabetic nephropathy	49
Table (4):	Clinical characteristics of diabetic patients a control group	
Table (5):	Laboratory characteristics of diabetic patients a control group	
Table (6):	Comparison of the clinicopathologic characteristics between diabetic patients and cont group	rol
Table (7):	Comparison between non-complicated a complicated diabetic patients and control group relation to clinical and laboratory variables	in
Table (8):	Comparison between normoalbuminuric a microalbuminuric diabetic patients and cont group as regards clinical and laboratory variables.	rol
Table (9):	Comparison between progressors and no progressors in normoalbuminuric a microalbuminuric diabetic groups as regar clinical and laboratory variables	nd rds
Table (10):	Serum MBL levels in relation clinicopathological characteristics of diabe patients	etic
Table (11):	Comparison between baseline and follow- serum MBL levels in relation to diabe complications and subgroups	tic
Table (12):	Correlation between MBL levels and clinical a laboratory parameters of diabetic patients	
Table (13):	Correlation between MBL levels and clinical a laboratory parameters of diabetic patients	

LIST OF TABLES (Cont...)

Tab. No	o. Title Page	No.
Table (14):	Multiple regression analysis of the relation of MBL to clinical and laboratory variables in type 1 diabetic patients	132
Table (15):	Comparison between baseline and follow-up hs- CRP levels in relation to diabetic complications and subgroups	138

LIST OF FIGURES

Fig. No.	Title P	age No.
Figure (1):	Possible mechanism for development of type diabetes	
Figure (2):	Cellular and molecular mechanisms in the development or prevention of type 1 diabetes	
Figure (3):	Diagram of the effects of insulin deficiency	16
Figure (4):	Insulin activity profile of some available insulins	30
Figure (5):	Simple schema for the pathogenesis of diabet nephropathy	
Figure (6):	Hyperglycemia in Pathophysiology of diabet nephropathy	
Figure (7):	Histopathological finding in DN	44
Figure (8):	Algorithm for microalbuminuria screening	53
Figure (9):	Disease duration as risk factor DN	59
Figure (10):	Long-Term Monitoring of DN	73
Figure (11):	Genetic and functional buildup of MBL	77
Figure (12):	MBL subunit	78
Figure (13):	MBL trimer	78
Figure (14):	The Lectin Pathway of Complement Activation	83
Figure (15):	Function of complement system	85
Figure (16):	MBL recognizes bacterial surfaces by the particular spacing of carbohydrate residues	
Figure (17):	Mechanism of complement activation in diabet nephropathy	
Figure (18):	Pie chart show the percentage of diabet complications in the diabetic patients group	
Figure (19):	Baseline serum MBL levels in all diabetic patien compared with healthy controls	

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (20):	Disease duration in complicated diabetic patie comparison with non complicated	
Figure (21):	Baseline serum MBL levels in complicated non-complicated diabetic patients compared healthy controls	with
Figure (22):	Box plot figure for baseline MBL levels an normo- and microalbuminuric diabetic patients control.	and
Figure (23):	Baseline and follow-up serum MBL level normoalbuminuric and microalbuminuric dia groups.	betic
Figure (24):	Blood pressure in normoalbuminuric group microalbuminuric group in comparison with co group.	ntrol
Figure (25):	Blood pressure in progressors and non progres diabetic group.	
Figure (26):	HbA1c in progressors and non progressors dia groups.	
Figure (27):	Serum MBL levels in progressors and non progre in Normoalbuminuric group and microalbuminudiabetic group.	nuric
Figure (28):	Positive correlation between serum MBL levels random blood glucose (RBG) in type 1 dia patients.	betic
Figure (29):	Positive correlation between serum MBL levels HbA1c in type 1 diabetic patients	
Figure (30):	Positive correlation between serum MBL levels serum creatinine in type 1 diabetic patients	
Figure (31):	Positive correlation between serum MBL levels urinary albumin creatinine rate (UACR) in ty diabetic patients.	pe 1

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (32):	Positive correlation between serum MBL levels high sensitivity C-reactive protein (hs-CRP) in 1 diabetic patients.	type
Figure (33):	Receiver Operating Characteristic (ROC) c analysis of MBL for detection of diabetic patr with micro-vascular complications	ents
Figure (34):	The cutoff value of MBL for detection of dial micro-vascular complications.	
Figure (35):	Receiver Operating Characteristic (ROC) canalysis of MBL for detection of progressors an normoalbuminuric diabetic group	nong
Figure (36):	The cutoff value of MBL for detection progressors among normoalbuminuric dial group.	petic
Figure (37):	Baseline and follow-up high sensitivity C-read protein (hs-CRP) as regard the progression normoalbumineric and microalbumineric diagroups.	in betic
Figure (38):	Receiver Operating Characteristic (ROC) canalysis of hs-CRP for detection of diabetic pat with micro-vascular complications.	ients
Figure (39):	The cutloff value of hs-CRP for detection diabetic micro-vascular complications	

LIST OF ABBREVIATIONS

Abbrev	Full term
ACE	Angiotensin-converting-enzyme
ACEI	Angiotensin-converting-enzyme inhibitor
ADA	American diabetes association
ADH	Anti-diuretic hormone
AER	Albumin excretion rate
ARBs	Angiotensin receptor blockers
BP	Blood pressure
CKD	Chronic kidney disease
COX-2	Cyclooxygenase 2
CRD	Carbohydrate recognition domain
CRP	C reactive protein
DCCT	The Diabetes Control and Complications Trial
DN	Diabetic nephropathy
EDIC	Diabetes Interventions and Complications
eGDR	Estimated glucose disposal rate
EPO	Erythropoietin
ESRD	End stage renal disease
ET-1	Endothelin-1
GBM	Glomerular basement membrane
GFR	Glomerular filtration rate
HMG-CoA	Hydroxy-3-methylglutaryl-coenzyme A
HRGECs	Human renal glomerular endothelial cells;
I/R	Ischaemia/reperfusion
IDDM	Insulin dependent diabetes mellitus
IgM	Immunoglobulin M
kDa	Unified atomic mass unit unit of atomic mass normally used for the molecular weight

LIST OF ABBREVIATIONS (Cont...)

Abbrev	Full term
KRT	Kidney replacement therapy
LCP	Lectin complement pathway;
LDL	Low density lipoprotein
MA	Microalbumineria
MAC	Membrane attack complex
MASPs	MBL-associated serine proteases
MBL	Mannose-binding lectin;
mRNA	Messenger Ribonucleic Acid
NF-κB	Nuclear Factor Kappa Beta
NO	Nitrous oxide
NSAIDs	Nonsteroidal anti-inflammatory drugs
PDR	Proliferative diabetic retinopathy
PG2	Prostaglandins 2
PKC	Protein kinase C
PMN	Polymorphonuclear
PTH	Parathyroid hormone
RAAS	Renin-angiotensin-aldosterone system
RF	Rheumatoid factor
ROS	Reactive oxygen species
SLE	Systemic lupus erythematosus
T1DM	Type 1diabetes mellitus
TGF-β1	Transforming growth factor beta
TNF-α	Tumor necrosis factor-alpha
UAE	Urinary albumin excretion
VEGF,	Vascular endothelial growth factor

ABSTRACT

Background: In diabetes, angiogenesis is disturbed, contributing to proliferative retinopathy, nephropathy and neuropathy. Diabetic nephropathy is one of the most serious complications in patients with type 1 diabetes, being the most common cause of end-stage renal failure and major predictor of premature death. The pathogenesis of diabetic renal disease is multifactorial, and its progression may involve both low-grade inflammation and activation of the complement system. Mannose-binding lectin (MBL) is a key molecule of the innate immune system and involves a pro-inflammatory component and complement activation at the vascular level.

Objectives: We determined the level of MBL in children and adolescents with type 1 diabetes mellitus as a potential marker for diabetic micro-vascular complications including diabetic nephropathy and assess its relation to the clinicopathological characteristics of patients, high sensitivity C-reactive protein (hs-CRP), glycemic control and progression of renal disease.

Materials and methods: This prospective study was carried out on 43 children and adolescents with type 1 diabetes compared with 30 age- and sexmatched healthy controls. Patients were subjected to detailed medical history with special emphasis on disease duration and insulin therapy, thorough clinical examination and laboratory assessment of hs-CRP, HbA1c and the presence of micro-vascular complications including nephropathy. All the patients were prospectively followed up for a mean period of 11 ± 4.3 months stressing on the progression in renal disease.

Results: Patients were divided according to the presence of micro-vascular complications into 2 groups. Baseline serum MBL levels were significantly elevated in all diabetic patients compared with controls (p<0.001). MBL levels were also significantly increased in patients with micro-vascular complications (2054 \pm 876 ng/mL) and non-complicated patients (1023 \pm 462 ng/mL) compared with healthy controls (279 \pm 120 ng/mL) with highest levels found in complicated patients (p<0.001). Additionally, follow-up MBL levels were markedly elevated in patients with micro-vascular complications compared with non-complicated patients (3477 \pm 1263 versus 1715 \pm 799; p<0.001) or baseline levels (p<0.001). MBL levels were significantly increased in patients with retinopathy or peripheral neuropathy (p<0.001). Diabetic patients were classified according to urinary albumin excretion (UAE) into 3 groups; normoalbuminuric, microalbuminuric or macroalbuminuric group. Baseline and

follow-up MBL levels were elevated in diabetic patients with or without microalbuminuria compared with control subjects (p<0.001). Type 1 diabetic patients progressed from normoalbuminuria or microalbuminuria to a higher albuminuria level had significantly higher baseline and follow-up MBL levels than non-progressors in each group and levels showed marked elevation in patients progressed from microalbuminuria to macroalbuminuria reaching a mean 4900 ± 675 ng/mL (p<0.001). Significant positive correlations were found between baseline MBL levels and disease duration, blood pressure, blood glucose, HbA1c, serum creatinine, triglycerides, total cholesterol, UAE and hs-CRP (p<0.05). Multiregression linear analysis showed that serum creatinine, UACR, and hs-CRP were independently related to baseline MBL levels in type 1 diabetic patients (p<0.05). ROC curve analysis revealed that the cutoff value of MBL at 1520 ng/mL could differentiate complicated from non-complicated cases with a sensitivity of 70.8%, specificity of 84.2%. As regards hs-CRP, levels were significantly higher in all diabetic patients and both diabetic groups than controls (p<0.05). Follow-up levels were significantly elevated than baseline hs-CRP levels in patients (p<0.001). Normo- or micro-albuminuric diabetic patients had also higher hs-CRP levels than controls (p<0.05), however, hs-CRP showed no significant difference between progressors or non-progessors and ROC curve showed a lower specificity of hs-CRP for detection of micro-vascular complications.

Conclusions: We suggest that serum MBL levels are elevated in type 1 diabetic patients, particularly those with micro-vascular complications and a significant correlation with HbA1c, UAE and hs-CRP exists. MBL can be considered a potential marker of progression of renal disease in type 1 diabetes that proved a better specificity than hs-CRP. Therefore, measurement of MBL levels in poorly controlled patients would help to identify those at high risk of developing micro-vascular complications who could benefit from intensive insulin therapy to achieve strict glycemic control.