DIFFERENT MODALITIES IN THE MANAGEMENT OF TRAUMATIC LUMBAR AND THORACOLUMBAR SPINE FRACTURES

Thesis

Submitted for the fulfillment of The Master Degree (M.Sc.) in **GENERAL SURGERY**

By

AHMED ABDEL RAHMAN AHMED

(M.B.; B.Ch.)

Under the supervision of

PROF. DR. AMR SAFWAT

Professor of Neurosurgery; Faculty of Medicine; Cairo University

PROF. DR. IBRAHIM GALAL

Professor of General Surgery, Faculty of Medicine, Cairo University

DR. MOHAMMED ALAA ELDDIN

Lecturer of Neurosurgery, Faculty of Medicine, Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY 2012

بسم الله الرحمن الرحيم

ACKNOWLEDGEMENT

I wish to thank our Professor Dr. AMR SAWFAT, Professor of Neurosurgery, Faculty of Medicine, Cairo University; who honored me by carrying out the burden of meticulously revising my script and guiding my thoughts.

I am also profoundly grateful to Professor Dr. IBRAHIM GALAL, Professor of General Surgery, Faculty of Medicine, Cairo University, for his brotherly guidance and enormous support that was a great help to me.

My greatest gratitude to Dr. MOHAMED ALAA EL-DIN MOHAMED, Lecturer of Neurosurgery, Faculty of Medicine, Cairo University, for his great efforts and continuous support to make this study most scientific and most beneficial.

TO MY FATHER

CONTENTS

		Page
•	INTRODUCTION	1
•	AIM OF THE WORK	4
•	REVIEW OF LITERATURE	5
	o Anatomy	5
	O Development of the spine	31
	o Assessment	37
	O Classification of thoracic and lumbar fractures	58
	o Biomechanics thoracolumbar spine stability	73
	o Management	84
•	PATIENTS AND METHODS	113
•	RESULTS	116
•	DISCUSSION	126
•	CONCLUSION	130
•	SUMMARY	. 131
•	REFERENCES	132
•	ARABIC SUMMARY	. 150

LIST OF FIGURES

No.	Title	Page
1	Three views of the vertebral column	5
2	Midsagittal view of a vertebra	8
3	A typical vertebra	16
4	Z joint at different regions	19
5	Anatomy of the Z joints	19
6	Innervation of Z joints	21
7	An inter-vertebral disc	22
8	Contents of the vertebral canal	25
9	Motion between adjacent vertebrae	29
10	Cross section through the amnionic (amniotic) cavity, showing the formation of the neural tube and neural crest from its floor	31
11	Cross section through two stages in somite differentiation	32
12	Cross-sectional views and a lateral view of a vertebra	34
13	Lateral radiographs of a 55-year-old patient involved in a motor vehicle accident showing a T6 burst fracture with 42 degrees of kyphotic angulation	38
14	A) Axial computed tomographic image showing a lateral (burst) fracture of the body of T6 (arrow) and involvement of posterior structures including the spinal lamina (arrowhead). A small amount of bone is retropulsed in the spinal canal. (B) Sagittal reconstruction image showing that more height has been lost anterior than posterior. The small amount of bone retropulsed into the canal (arrow) is again apparent	40
15	(A) Sagittal T2-weighted magnetic resonance image from the patient shown in Fig. (2.2). The burst fracture and the bone retrospulsed into the spinal canal and impinging on the spinal cord are visible (arrow). (B) Sagittal fat-suppressed magnetic resonance image showing significant ligamentous and soft-tissue injury over the dorsal spine as indicated by the hyperintense signal (arrows).	42
16	(A) Cross-section through cervical spinal cord showing specific	47

No.	Title	Page
	motor and sensory tracts as well as the topographical organization of the motor and sensory tracts. (B) Brown-Sequard syndrome with hemisection of cord (red). (C) Central cord syndrome with injuries to the central portion of the spinal cord affecting the arms more than the legs. (D) Anterior cord syndrome with sparing of only the posterior columns of the spinal cord. (E) Posterior cord syndrome affects only the posterior columns.	
17	Dermatomal map showing distribution of sensory levels over the body	48
18	Type A injuries are caused by axial compression with or without flexion	61
19	Impaction fractures present with intact posterior elements, intact posterior wall, and no violation of the spinal canal as in this type A1.2 injury	62
20	Coronal split fracture (A2.2)	63
21	(A) Lateral view of a burst-split fracture type A3.2. (B,C) CT scan of the upper and lower part of the vertebral body	64
22	(A) Lateral view of a complete burst fracture type A3.3. (B,C) CT scan of the upper and lower part of the vertebral body	64
23	Type B, two-column injury with either (A) posterior or (B) anterior transverse disruption	67
24	Posterior disruption predomaintly osseous combined with a complete burst fracture (type B2.2 + A3.3)	67
25	Two-column injury with rotation	69
26	Comprehensive classification, diagrammatic representation of three types (A, B and C) and nine groups (A1-A3, B1-B3, C1-C3)	72
27	(A) Nonlinear response of a spine segment loaded in flexion (positive load) and extension (negative load). Range of motion (ROM) is the total displacement observed under physiological loading. Neutral zone (NZ) is the component of the ROM before the change in stiffness is observed. (B) A ball in a bowl analogy is shown. The ball can move easily in the bottom of the bowl, but encounters increased resistance at the limits of motion	75
28	In the two-column spine model, the posterior column is composed of all structures posterior to the pedicles	81

No.	Title	Page
29	Laminectomy. Removal of the posterior lamina and spinous process allows access to the dorsal spinal cord	102
30	Transpedicular approach. Removal of the posterior lamina and ipsilateral pedicle provides excellent access to the dorsal and lateral spinal cord	103
31	Costotransversectomy approach. Removal of ipsilateral lamina and pedicle as well as the transverse process and proximal rib allows a more lateral trajectory to the spinal cord	104
32	Lateral extracavitary approach. Resecting the ipsilateral lamina, pedicle, transverse process, and rib and approaching the vertebral body through the extracavitary thoracic space provide greater visualization of the ventral spinal canal, which is augmented further by performing a partial corpectomy just anterior to the spinal canal	105
33	Transsternal approach. By spreading the sternum and gently retracting mediastinal structures, an axis to the upper thoracic spine (T1-T4) is obtained	107
34	Transthoracic approach. By using the pleural space through a thoracotomy or with thoracoscopy, the lateral aspect of the thoracic vertebral spine can be accessed	108
35	A left-sided thoracotomy centered at T6 was performed in the same patient	110
36	Multiple techniques are available for instrumenting the spine posteriorly	112
37	Types of surgery	117
38	Degree of improvement	118
39	Percent of complications	121
40	Degree of improvement	122

LIST OF TABLES

No.	Title	Page
1	Summary of Muscles Affecting the Spine	26
2	Factors affecting vertebral movements	30
3	Type A Injuries: Groups and Subgroups Type A Vertebral Body Compression	71
4	Type B injuries: groups and subgroups	71
5	Type C injuries: Groups and Subgroups	72
6	Criteria of clinical instability	78
7	Distribution according to age	117
9	Distribution of lesions according to anatomical site	118
9	Types of fractures	119
10	Distribution according to presentation	119
11	Distribution according to management	120
12	Distribution according to type of surgery	120
13	Distribution according to outcome (pain motor sensory)	121
14	Detailed outcome improvement	122
15	Distribution according to complications	123
16	Long term follow up	124
17	Correction of preoperative kyphoses	124

ABSTRACT

The study aims at detecting the variable outcomes of traumatic thoracolumbar and lumbar spine fractures according to the line of management with special concern to the fusion rates and factors affecting it. The study is based on the radiological and clinical follow up of 30 patients with traumatic thoracolumbar and lumbar spine fractures for 6 months to detect the clinical, radiological and functional outcomes. It was found that the posterior fusion technique is more readily used than the anterior technique.

Keywords:

Thoracolumbar – lumbar - fractures-spine-management-fixation

INTRODUCTION

Spinal fractures have an annual incidence of 64 per 100,000 and neurological deficit is seen in 10–30%, resulting in an estimated 12,000 new spinal cord injuries in the United States every year (Jozef et al., 2006; Hu et al., 1996; Sekhon and Fehlings, 2001). Only 54% of all patients with spinal fractures return to their previous level of employment (Jozef et al., 2006; Sekhon and Fehlings, 2001). Vertebral fractures are usually severe injuries caused by high-energy traumas. Vertebral injuries may be due to isolated traumas or multiple traumas (Trivedi, 2002; McLain, 2004).

The treatment of thoracolumbar fractures remains controversial (Kaneda et al., 1997). Although most authors believe that surgical treatment is needed for unstable burst fractures, the choice for operative approaches remains disputed (Kaneda et al., 1997; Katonis et al. 1999; Li et al., 2005). Common opinion is to obtain the most stable fixation by fixating as few vertebrae as possible and neural canal decompression (Kaneda et al., 1997; Murat et al., 2007; Muller et al., 1999).

The thoracolumbar spine fractures are classified into 4 principal types (Sasso et al., 2005; Kaye et al., 2005).

Flexion-rotation injuries: these injuries occur most frequently at the T12/L1 level and result in anterior dislocation of the T12 on the L1 vertebral body. There is usually disruption of the posterior longitudinal ligament and posterior bony elements. The inferior vertebral body often sustains an anterior superior wedge compression fracture. These are unstable injuries which usually result in complete neurological deficit of the spinal cord, conus or cauda equina.

Compression injuries: These injuries are common and the vertebral body is decreased in height. They are usually stable injuries and neurological damage is uncommon.

Hyperextension injury: This is a very uncommon mechanism of injury at the thoracolumbar spine. It involves rupture of the anterior longitudinal ligament, rupture of the intervertebral disc and fracture through the involved vertebral body anteriorly. The injuries are unstable and usually cause severe cord injury.

Chance fractures: This injury needs to be considered in patients who are involved in a high-speed accident wearing lap belts without a shoulder harness. They sustain a hyper flexion distraction injury to the thoracolumbar spine. The forward flexion and bending result in two potential types of injuries, and they can cause a fracture through the spinous process pedicle and vertebral body or a fracture through the end-plate with disruption of the facet joint and ligamentous structures. These injuries can easily be missed because of the unusual radiological findings. They could well be associated with internal injuries, especially abdominal injuries.

The spinal cord injury is caused by **Kaye** (2005):

- The direct force applied to the cord
- Ischemia due to vascular injury
- Secondary hemorrhage in and around the cord.

The degree of neurological injury will be determined by the extent and severity of these mechanisms.

Complete lesions The most severe consequence of spinal trauma is complete transverse myelopathy, in which all neurological function is absent below the level of the lesion, causing either a paraplegia or quadriplegia, depending on the level. There will also be impairment of autonomic function including bladder and bowel function.

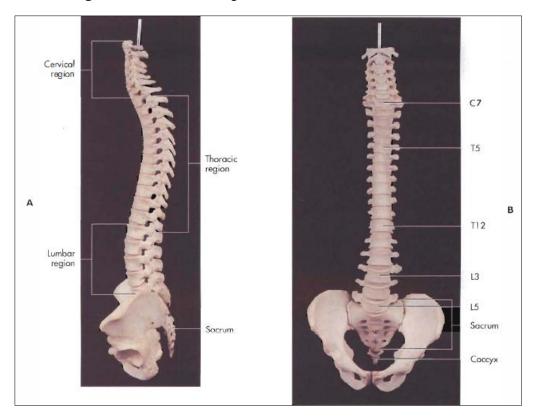
Incomplete lesions due either to stretch applied by the attachment of the dentate ligaments at the equatorial plane of the cord or to ischemic injury from compromise of the anterior spinal artery which supplies the anterior two-thirds of the cord.

The general principles of management are **Kaye** (2005):

- Prevention of further injury to the spinal cord
- Reduction and stabilization of bony injuries
- Prevention of complications resulting from spinal cord injury
- Rehabilitation.

AIM OF THE WORK

The study aims at detecting the variable outcomes of traumatic thoracolumbar and lumbar spine fractures according to the line of management and clarifies the best time of intervention with special concern to the fusion rates and factors affecting it.


The study is based on the radiological and clinical follow up of 24 patients with traumatic thoracolumbar and lumbar spine fractures for 6 months following the onset of trauma to detect the clinical, radiological and functional outcomes.

ANATOMY

CURVES OF THE SPINE:

The spine develops from anterior to posterior curves two kyphoses and two lordoses.

These include the thoracic and pelvic curvatures (**Fig. 1**). They are referred to as primary curves because they are seen from the earliest stages of fetal development.

Fig. (1): Three views of the vertebral column. A, Lateral view showing the cervical, thoracic, lumbar and sacral regions. Also notice the cervical and lumbar lordoses and the thoracic and sacral kyphoses. B, Anterior view.