

Kasr Al-Aini Center of Clinical Oncology NEMROCK

PHASE II PROSPECTIVE RANDOMIZED CLINICAL TRIAL OF
DOXORUBICIN, BLEOMYCIN, VINBLASTINE, AND DACARBAZINE (ABVD)
FOLLOWED BY RADIATION THERAPY (RT) VERSUS ABVD ALONE FOR
STAGES I, II, AND IIIA HODGKIN LYMPHOMA WITH ROLE OF
PROGNOSTIC BIOLOGICAL PARAMETERS
(A prospective hospital based study)

A Thesis Submitted for partial fulfillment of MD in clinical oncology

Presented by
Dr. Wael Mahmoud Youssef
M.B.B.CH Faculty of Medicine – Assiut University
Master degree in clinical oncology

Supervised by

Professor Dr. WAFAA HASSAN EL METNAWY

Professor of clinical oncology Kasr el Aini Oncology Center, Faculty of Medicine, Cairo University

Professor Dr. FAROOK HAGGAG

Professor of clinical oncology Kasr el Aini Oncology Center, Faculty of Medicine, Cairo University

Professor Dr. EMAD HAMADA

Professor of clinical oncology Kasr el Aini Oncology Center, Faculty of Medicine, Cairo University

Abstract

Background and Objectives: The optimal treatment of early-stage Hodgkin lymphoma has been controversial because of the success of several approaches. Concerns regarding radiation toxicities and the previously detected good response to chemotherapy have led some to withhold radiation therapy (RT) for the treatment of stage I , II and IIIA Hodgkin's lymphoma. The aim of This study To determine whether combined modality therapy (CMT) is superior to chemotherapy (CT) alone in early stage Hodgkin's lymphoma patients.

Patients and methods: This was a prospective clinical trial carried in Kasr El Aini Oncology And Nuclear Medicine Centre (NEMROCK). From February 2007 to June 2011, untreated Hodgkin Lymphoma patients with clinical stages (CSs) IA, IB, IIA, IIB, and IIIA were randomized to 4 cycles of doxorubicin, bleomycin, vinblastine, dacarbazine (ABVD) alone or 4 cycles of ABVD followed by radiation therapy (RT) (3600) cGy. Patients were tested for pre-treatment sCD30 and IL13 levels. Response rate, disease free survival and overall survival were estimated by the Kaplan-Meier method, and Cox multivariable Regression model was used to analyze trends.

Results: Of 60 patients randomized 30 receive RT after 4 cycles of ABVD; the complete remission (CR) percentage was 83.3% and partial response, 16.7%. For ABVD alone, 73% achieved a CR; 23.3%, a partial response (PR); and 3.3%, disease progression. At 30 months relapse rate, progression free survival (PFS), and overall survival (OS) for ABVD _ RT versus ABVD alone are 16.7% versus 28.4%, 83% versus 60% (P _ .004), and 93.3% versus 90% (P _ .222), respectively (log-rank).

Conclusion: Additional radiotherapy improves response, prevents relapse and increases RFS in patients receiving four cycles of ABVD hemotherapy. Combined modality treatment (ABVD and consolidation radiotherapy) is standard of care. A biological parameter such as serum sCD30 level could be helpful in obtaining a more precise selection of patients suitable for more intensive treatment.

Key Word: ABVD-BLEOMYCIN-VINBLASTINE-RT.

Acknowledgment

First of all, all gratitude and thanks to **ALLAH** for all gifts gave me, my life -all my life- will not compensate any of his majestic help.

It is pleasure to express my sincere gratitude to **Prof. Dr. WAFAA HASSAN EL METNAWY**, Professor of clinical oncology Kasr el Aini

Oncology Center for her kind supervision inspite of her duties, valuable guidance and endless support.

All thanks and Respect to my **Prof**. **Dr. FAROOK HAGGAG**Professor of clinical oncology Kasr el Aini Oncology Center for his kind supervision inspite of his duties, valuable guidance and endless support.

My special thanks to **Prof. Dr. EMAD HAMADA** for his strict supervision to do our best in carrying out this study and for brotherhood spirit he showed during this work.

And thanks to all staff members, my colleagues and everybody helped me in this study.

Wael Mahmoud Youssef

CONTENTS

1- L	LIST OF ABREVIATIONS	5
2- L	LIST OF FIGURES.	7
3- L	LIST OF TABLES	8
4- I	NTRODUCTION	9
5- A	AIM OF THE WORK	13
6- R	REVIEW OF LITERATURE	15
• <i>H</i>	Historical Aspects	16
• <i>E</i>	Epidemiology	17
• <i>N</i>	Molecular Biology and cell of origin	20
• 6	Classification	24
• S	Staging	30
• <i>L</i>	Diagnosis:	31
	o Physical findings	31
	o laboratory abnormalities	31
	o Functional imaging	35
	 Gallium 	35
	■ PET	37

•	Prognosis	47
•	Treatment	50
	-Principles of Radiation Therapy in HL	50
	-Chemotherapy	68
	-combined modality	84
7-	PATIENT AND METHODS	90
8-	RESULTS	97
•	A-Patient's characteristics	98
•	B-Correlations between different clinico-	99
	pathological parameters	
•	C- Response at the end of treatment	100
•	D-Biological markers	101
•	E-Follow up and survival analysis	103
9-	DISSCUSSION	126
10-	SUMMARY AND CONCLUSION	136
11-	ANNEX	138
12-	REFRENCES	143
13-	ARABIC SUMMARY	

LIST OF ABREVIATIONS

ABVD Doxorubicin, Bleomycin, Vinblastine, and Dacarbazine

ASCO American Society of Clinical Oncology

BUN Blood urea nitrogen BCR B cell receptor

CALGB Cancer and Leukemia Group B

CBC Complete blood count CCG Children Cancer Group CD Cluster of Differentiation

CR complete response

CRu complete remission unconfirmed

cGy CentiGray
Chemo Chemotherapy

Chemo-RT Chemo-radiotherapy

CMT Combined modality treatment cHL Classic Hodgkin Lymphoma

CS Clinical stage

CT Computed tomography CTV Clinical target volume

DLBCL Diffuse Large B cell Lymphoma

EBV Epstein - Barr virus

EBVNA Epstein - Barr virus Nuclear Antigen

LMP Latent Membrane Proteins

ECOG Eastern Cooperative Oncology Group

EFS Event-free survival

EFRT Extended field radiotherapy EMA Epithelial membrane antigen

EORTC European Organisation for Research and Treatment of Cancer

FDG Fluro Deoxy Glucose GC Germinal Center

GELA Groupe d'Etude des Lymphomes de l'adulte

GHSG German Hodgkin's Study Group

GTV Gross tumor volume HD Hodgkin's Disease HL Hodgkin's lymphoma

HRS Hodgkin and Reed-Sternberg

LRCHL Lymphocyte-rich classic Hodgkin lymphoma

IgV Imunoglobulin V

IIL Intergruppo Italiano Linfomi

IL Interlukin

IPS International Prognostic Score JCO Journal of Clinical Oncology

LFTs Liver function tests LN Lymph node(s)

LND Lymph node dissection LP Lymphocytic Predominant

LVEF Left ventricular ejection fraction MHC Major Histocompatibility Complex

MRI Magnetic resonance imaging MRU Minimal Residual Uptake

NCCN National Comprehensive Cancer NCIC National Cancer Institute of Canada NEJM New England Journal of Medicine

NLPHL Nodular Lymphocyte-Predominant Hodgkin Lymphoma

NPV Negative Predective Value

OS Overall survival

PCR Polymerase chain reaction
PET Positron emission tomography
PPV Positive Predictive Value

PR Partial response
PS Performance status
PTV Planning target volume
RFS Relapse-free survival
RT Radiation therapy

RTOG Radiation Therapy Oncology Group sCD30 serum Cluster of Differentiation 30

SUV Standard Uptake Value WHO World Health Organization

∟ist of figures:

FIGURE	PAGE
Figure 1: Average annual incidence rates of HL by age and race/ethnicity	18
Figure 2: Average annual incidence rates of HL by age and socioeconomics	18
Figure 3: Ann arbor lymphoid regions.	29
Figure 4: Lymph node biopsy showing a Reed-Sternberg cell.	32
Figure 5: PFS according to the (IPS) Group and PET results after ABVD	41
Figure 6: Unilateral cervical field for stage IA high cervical node	56
Figure 7: Axillary field with shielding of humeral head.	57
Figure 8: Neck and mediastinum with lung shielding.	58
Figure 9: Groin with shielding of testes and small bowel.	60
Figure 10: Relation between age and pathology.	112
Figure 11: Relations between age and response.	112
Figure 12: Relation between stage and response.	113
Figure 13:Relation between Pathology and response	113
Figure 14: Relation between ESR and age group	114
Figure 15: ESR relation to the Pathology	114
Figure 16: Relationship between ESR and stage	115
Figure 17: Relationship between ESR and Response	115
Figure 18: Relation between sCD30 and the age groups	116
Figure 19: Relation between sCD30 and the Stage	116
Figure 20: Relation between sCD30 and the B symptoms	117
Figure 21: Relation between sCD30 and the pathology	117
Figure 22: Relation between sCD30 and the response	118
Figure 23: Relation between sCD30 and the ESR	118
Figure 24: Relation between sCD30 and the risk of Death	119
Figure 25: Relation between sCD30 and the Relapse	119
Figure 26: Kaplan-Meier RFS in whole group	120
Figure 27: Comparing survival in both Sex DFS	121
Figure 28: Effect of stage on RFS	122
figure 29: Comparing RFS in different pathological groups	123
Figure 30: Comparing RFS in both Arms and Multivariate analysis	123
Figure 31: Kaplan-Meier OS in whole group	124
Figure 32: Overall Survival in both arms	124
Figure 33: Effect of B symptoms and stage on OS	125

∟ist of ⊤ables

TABLE	PAGE
Table 1: Morphologic and Immunophenotypic Features of NLPHL & cHL	28
Table 2: Differential Diagnosis of Hodgkin Lymphoma	29
Table 3: prognostic factors in Early early-stage HL	48
Table 4: Adverse Prognostic Factors Identified in the IPS	49
Table 5: IPS and Freedom from Progression in Advanced HL	50
Table 6: Age distribution of patients.	105
Table7: Sex distribution of patients	105
Table 8: pathology distribution of patients	105
Table 9: Stage distribution	106
Table 10: Erytrocitic sedimentation rate before starting treatment.	106
Table 11: Relation between stage and pathology	106
Table 12: relation between ESR and STAGE	107
Table 13: Response rate	107
Table 14: Patients characteristics in both arms	108
Table15: Relation between B-symptoms and response	108
Table 16: Serum CD30 in relation to stage	109
Table 17: Serum IL-13 level	109
Table 18: Response in both arms	109
Table 19: Factors affecting response (Univariate analysis)	110
Table 20: Factors affecting response (Multivariate analysis)	110
Table21: Rate and sites of relapse	111
Table 22: Relapse in relation to treatment	111

Introduction

Introduction

The efficacy of treatment in Hodgkin's lymphoma has improved progressively over the last 35 years. Currently available therapeutic modalities (radiotherapy, chemotherapy or both combined) enable the cure of at least 80% to 85% of treated pa ents [Yung et al. 2003].

The increase of specific survival and the early age of the patients diagnosed with Hodgkin's lymphoma has resulted in the finding of other severe pathologies occurring with a incidence higher than that observed in population subgroups of similar age. About 46% of pa ents die from causes not directly related to lymphoma: these include secondary neoplasias, cardiovascular and other toxicities treatment events secondary to the administered [Aleman et al. 2003]. This percentage is even higher in patients with early-stage Hodgkin's lymphoma. Recently, Ng et al reported that late toxicity is the main cause of mortality in patients <50 years diagnosed with stage I or II Hodgkin's lymphoma. In this study, mortality unrelated to lymphoma was twice that directly caused by the disease in patients with early-stage disease and a good prognosis [Ng AK et al. 2002].

Some late toxic deaths are due to the use of alkylating chemotherapeutic agents, most of which are specifically related to the MOPP schedule (mechlorethamine, vincristine, procarbazine and prednisone) or derived compounds. Treatment with alkylating agents without radiotherapy is associated with increased lung cancer risk [Travis et al. 2002]. However, late toxicities leading to higher mortality are attributed to radiotherapy [van Leeuwen et al.

1999]. Those pa ents irradiated by mantlefield have a risk of suffering myocardial infarction three times higher than patients who receive no myocardial irradiation [Hancock et al 1999].

Far more relevant is the continuous and growing risk of developing a second solid tumor, found in patients treated with radiotherapy: this risk increases for at least 25 years a treatment [van Leeuwen et al.2000]. A popula onbased study analyzed 32 591 pa ents and found a rela ve risk of 22% of having a second solid tumor 25 years after the diagnosis of Hodgkin's lymphoma [Dores GM et al. 2002]. The magnitude of this problem is even more evident if we consider the risk of developing breast cancer in women that have undergone mantle field irradiation. In this particular case, the relative risk is twice that of the overall popula on [Dores GM et al. 2002]. However, in womentreated under the age of ~25 years, the picture is very different. In this population the absolute excess risk of breast cancer (per 10 000 female patients per year of follow-up) has ranged from 16.7 (for ents followed for less than 14 years) to169 (follow-up longer than 15 years) [van Leeuwen et al. 1999].

A logical way to avoid the late effects of radiotherapy might be to avoid its use. However, this would require alternative therapies that have a similar efficacy to therapies that include radiotherapy. Furthermore, these alternative treatments should not induce severe or potentially lethal late toxic effects. The results of a small randomized study conducted by the American National Cancer Ins tute were reported in 1991 [Longo et al. 1991]. This study suggested that the administration of six cycles of MOPP chemotherapy was equally or even more effective than extended field radiotherapy in patients with pathological stage I or II

Hodgkin's lymphoma. However, in a similar Italian trial the survival rate was significantly higher in patients treated with radiation therapy. Acute toxicities, infertility and the risk of myeloid leukemia induced by MOPP schedule led to an overall rejection of this therapeutic alterna ve[Bi et al. 1992].

Chemotherapy with the schedule ABVD (doxorubicin, bleomycin, vinblastine and dacarbacine) is the standard treatment for advanced-stage Hodgkin's lymphoma: ABVD has been found to be more efficacious than MOPP [Canellos et al 2002] and less toxic than the 'hybrid' chemotherapy MOPP/ABV (mechlorethamine, vincristine, procarbazine, prednisone, doxorubicin, bleomycin and ne) [Duggan et al. 2003]. Moreover ABVD does not cause vinblas sterility [Viviani et al. 1985], and its poten al for inducing second solid or hematological neoplasias seems to be lower than the observed with radiation therapy or MOPP. All these facts also support the use of ABVD schedule in patients with early disease stages with especial view on the duration needed [Valagussa et al. 1982].

MIM OF

WORK

Aim of work

The aim of the current study is to analyze the efficacy of 4 cycles of chemotherapy (ABVD) with or without irradiation among newly diagnosed Hodgkin's lymphoma patients with stages I ,II , IIIA . The treatment results are to be analyzed in correlation with clinical and biologic prognostic factors aiming at defining a subset of patients deserving more aggressive treatment.