

The Inhibitive Effect of Some Rare Earth Elements on Iron Corrosion in Clear and Polluted Sodium Chloride Solutions

Ву

Dalia Mohamed Ead

A Thesis

Submitted for Partial Fulfillment of the Requirements for the Master Degree of Science in Chemistry (Physical Chemistry)

Supervisors

Prof. Dr. A.S. Fouda

Professor of Physical Chemistry Faculty of Science Mansoura University Prof. Dr. A.H. El-Afandy

Head of contracts and agreements division
Nuclear Material Authority

Dr. H.E. Megahed

Ass. Professor of Physical Chemistry Faculty of Science Benha University

Approval Sheet

Title: The inhibitive effect of some rare earth elements on iron corrosion in clear and polluted sodium chloride solutions

Name: Dalia Mohamed Mohamed Ead

Supervisors:

Name	Position	Signature
Prof. Dr. A.S.Fouda	Prof. of Physical Chemistry Faculty of Science Mansoura University	
Prof. Dr. A.H. El-Afandy	Head of contracts and agreements division Nuclear Material Authority	
Dr. H.E. Megahed	Ass. Prof. of Physical Chemistry Faculty of Science Benha University	

Head of Chemistry Department Vice-Dean
For Graduate Studies
and Research

Dean of Faculty

Prof. Dr. S.G. Donia

Prof. Dr. M.A. El-Fakharany

Prof. Dr. M.K. EL-Manssi

REFEREES DECISION

Title: The inhibitive effect of some on iron corrosion in clear and polluted sodium chloride solutions

Name: Dalia Mohamed Mohamed Ead

Referees:

Name	Position	Signature

	4	e	\mathbf{r}	•
	Ota	Λt	1100	meeron.
v	aic	UΙ	DISC	ussion:

Degree of Dissertation:

Referees Signatures:

Name	Signature

Head of Chemistry Department Vice-Dean For Graduate Studies and Research Dean of Faculty

Prof. Dr. S.G. Donia Prof. Dr. M.A. El-Fakharany Prof. Dr. M.K. EL-Manssi

Contents

	Page
List of figures	i
List of tables	vii
Chapter (1)	
Chapter (\) Introduction	
Introduction	
1.1. What is corrosion?	١
1.7. Chemistry of corrosion	١
۱.۳. Corrosion inhibitors	٣
1.4. Uses of the rare earth elements	٤
\.o. Pitting corrosion	٧
\.o.\. What is pitting corrosion?	٧
1.0.7. Environmental Factors	٨
1.7. Techniques used in corrosion measurements	٨
1.7.1. Potentiodynamic polarization	٨
1.7.7. Electrochemical impedance spectroscopy (EIS)	11
1.7. T. Electrochemical frequency modulation (EFM)	77
Y.Y. Examination of the surface	۲ ٤
Y.Y.Y. Scanning electron microscopy (SEM)	۲ ٤
1.Y.Y. Energy dispersive x-ray (EDX)	۲ ٤
۱.۸. Literature Survey	70

Conten	ts =
۱.۸.۱. lanthanides salts as corrosion inhibitors	40
1.4.7. Inhibition of iron corrosion in clear and sulfide polluted sodium chloride solutions.	٣٢
Aim of the present work	٤٧
Chanter (Y)	
Chapter (۲) Experimental	
Laperimentar	
Y.Y. Materials and solution	٤٨
Y.Y.Y. Materials	٤٨
Y.Y. Solutions	٤٨
۲.۱.۳. Inhibitors	٤٩
Y.Y. Electrode preparation	٤٩
۲.۲.1. For electrochemical measurements	٤٩
Y.Y.Y. For surface examination	٤٩
۲. T. Apparatus experimental techniques	٥,
۲.۳.۱- Potentiodynamic technique	٥,
۲.۳.۲. EIS and EFM techniques	٥,
۲.۳. Surface examination techniques	01
۲.۳.۳. Scanning electron microscope (SEM)	٥١
۲.۳.۳.۲. Energy dispersive x-Ray (EDX)	01
Chapter (^r)	
Results and Discussion	
T Potentiodynamic polarization measurements	0 {

Conter	ıts 🕳
T.1.1. Tafel method	0 £
۳.۱.۲. Adsorption isotherm	٦٧
۳.۱.۳. Effect of temperature	٧٥
۳.۱.٤. Pitting corrosion	٩٣
۳.۲. Electrochemical impedance spectroscopy (EIS)	1.0
۳.۳. Electrochemical frequency modulation technique (EFM)	114
۳.٤. Surface examinations	177
۳.٤.۱. Scanning electron microscope (SEM) studies	177
۳.٤.۲. Energy dispersive x-ray (EDX) analysis	١٣٢
T.o. Mechanism of inhibition	١٣٧
۳.٦. Effect of sulfide on the corrosion behavior of iron in NaCl solution	1 1 1 1
References	1 £ 7
Summary	105
Arabic Summary	١

List of Figures

	Page
Fig. 7.1: Potentiodynamic polarization curves of iron in clear 7.0% NaCl in the absence and presence of different concentrations of LaCl _r at 70°C.	٥٧
Fig. 7.7: Potentiodynamic polarization curves of iron in clear 7.0% NaCl in the absence and presence of different concentrations of CeCl _r at 70°C.	٥٨
Fig. 7.7: Potentiodynamic polarization curves of iron in clear 7.0% NaCl in the absence and presence of different concentrations of SmCl _r at 70°C.	09
Fig. 7.4: Potentiodynamic polarization curves of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of LaCl ₇ at 70°C.	٦٠
Fig. 7.5: Potentiodynamic polarization curves of iron in polluted 7.5% NaCl in the absence and presence of different concentrations of CeCl ₇ at 75°C.	٦١
Fig. 7.7: Potentiodynamic polarization curves of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of SmCl _r at 70°C.	٦٢
Fig. 7. V: Variation of R_p of iron in clear and polluted 7.0% NaCl in the absence and presence of γ ppm of lanthanides compounds at γ °C as obtained from potentiodynamic measurements.	ጚጚ
Fig. $\P.\Lambda$: Langmuir adsorption isotherm plotted as (C/θ) vs. C of lanthanide compounds for the corrosion of iron in clear $\P.\circ\%$ NaCl at $\P.\circ^\circ C$.	٧.
Fig. 7.4: Langmuir adsorption isotherm plotted as (C/θ) vs. C of lanthanide compounds for the corrosion of iron in polluted 7.0% NaCl at 70°C.	٧١

lanthanide compounds for the corrosion of iron in clear ".°% NaCl at ".°°C.	٧٢
Fig. 7.11: El-Awady model plotted as $\log (\theta/1-\theta)$ vs. $\log C$ of lanthanide compounds for the corrosion of iron in polluted 7.0% NaCl at 7.0° C.	٧٣
Fig. 7.17: Potentiodynamic polarization curves of iron in clear 7.0% NaCl in the absence and presence of 7 ppm of lanthanides compounds at 70°C.	٧٨
Fig. 7.17: Potentiodynamic polarization curves of iron in clear 7.0% NaCl in the absence and presence of 7 ppm of lanthanides compounds at $\xi \circ {}^{\circ}C$.	٧٩
Fig. 7.14: Potentiodynamic polarization curves of iron in clear 7.0% NaCl in the absence and presence of 7 ppm of lanthanides compounds at °°°C.	۸.
Fig. 7.10: Potentiodynamic polarization curves of iron in polluted 7.0% NaCl in the absence and presence of 7.0 ppm of lanthanides compounds at 70°C.	۸۱
Fig. 7.17: Potentiodynamic polarization curves of iron in polluted 7.0% NaCl in the absence and presence of 7.0 ppm of lanthanides compounds at 50°C.	٨٢
Fig. 7.17: Potentiodynamic polarization curves of iron in polluted 7.0% NaCl in the absence and presence of 7 ppm of lanthanides compounds at 00°C.	۸۳
Fig. \forall .\A: Variation of R_p of iron in clear and polluted \forall .\aipprox\% NaCl in the presence of \forall \cdot\cdot\ ppm of SmCl_\tau at different temperatures as obtained from potentiodynamic measurements.	۸٧
Fig. 7.19: Arrhenius plots (log i _{corr.} vs. 1/T) for iron in clear 7.0% NaCl in the absence and presence of 7.0 ppm of lanthanide compounds.	٨٨

1.5

Fig. $^{\circ}$. Arrhenius plots (log i_{corr.} vs. $^{\circ}$ /T) for iron in polluted $^{\circ}$. $^{\circ}$ % NaCl in the absence and presence of Y.. ppm of lanthanide 19 compounds. Fig. \forall . \forall : log (i_{corr.} / T) vs. \forall T for iron in clear \forall . \circ % NaCl in the 9. absence and presence of $\cdot \cdot$ ppm of lanthanide compounds. Fig. 7.77: log (i_{corr} / T) vs. \/T for iron in polluted \(\tilde{\tilde{V}}\). \(^{\tilde{V}}\) NaCl in the 91 absence and presence of γ . ppm of lanthanide compounds. Fig. 7.77: Pitting corrosion of iron in clear 7.0% NaCl in the absence 90 and presence of different concentrations of LaCl_r at Yo^oC. Fig. 7.74: Pitting corrosion of iron in clear 7.0% NaCl in the absence 97 and presence of different concentrations of CeCl_r at Yo^oC. Fig. 7.70: Pitting corrosion of iron in clear 7.0% NaCl in the absence 97 and presence of different concentrations of SmCl_r at Yo^oC. Fig. 7.77: Pitting corrosion of iron in polluted 7.0% NaCl in the 91 absence and presence of different concentrations of LaCl_r at Yo^oC. Fig. 7.77: Pitting corrosion of iron in polluted 7.0% NaCl in the 99 absence and presence of different concentrations of CeCl_r at Yo^oC. Fig. 7.74: Pitting corrosion of iron in polluted 7.0% NaCl in the 1 . . absence and presence of different concentrations of SmCl_r at Yo^oC. Fig. 7.79: E_{pitt} vs. log [inh.] for iron in clear 7.0% NaCl in the 1.7 presence of different concentrations of lanthanide compounds at YooC. Fig. 7.7: E_{pitt} vs. log [inh.] for iron in polluted 7.0% NaCl in the 1.5 presence of different concentrations of lanthanides compounds at YooC.

Fig. 7.71: Epitt for iron in clear and polluted 7.0% NaCl in the

presence of Y... ppm of lanthanides compounds at YooC.

Fig. *.*Y: The Nyquist plots for the corrosion of iron in clear ***..%**NaCl in the absence and presence of different concentrations of LaCl_{*}

1.A

at ******0°C.

Fig. w.ww: The Bode plots for the corrosion of iron in clear v.o% NaCl in the absence and presence of different concentrations of LaCl_v at V.A vo^oC.

Fig. 7.74: The Nyquist plots for the corrosion of iron in clear 7.0%

NaCl in the absence and presence of different concentrations of CeCl_r 1.9

at 70°C.

Fig. w.wo: The Bode plots for the corrosion of iron in clear v.o% NaCl in the absence and presence of different concentrations of CeCl_v at 1.9 vo^oC.

Fig. 7.77: The Nyquist plots for the corrosion of iron in clear r.o% NaCl in the absence and presence of different concentrations of $SmCl_r$ at $roo^{\circ}C$.

Fig. w.wv: The Bode plots for the corrosion of iron in clear v.o% NaCl in the absence and presence of different concentrations of SmCl_v at 11. vo^oC.

Fig. $\forall . \forall A$: The Nyquist plots for the corrosion of iron in polluted $\forall . \circ \%$ NaCl in the absence and presence of different concentrations of LaCl_{τ} 111 at $\forall \circ ^{\circ}$ C.

Fig. w.wq: The Bode plots for the corrosion of iron in polluted w.o% NaCl in the absence and presence of different concentrations of LaCl_v 111 at yo°C.

Fig. 7.2: The Nyquist plots for the corrosion of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of CeCl _r at 70°C.	117
Fig. 7.21: The Bode plots for the corrosion of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of CeCl _r at 70°C.	117
Fig. 7.67: The Nyquist plots for the corrosion of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of SmCl _r at 70°C.	115
Fig. 7.27: The Bode plots for the corrosion of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of SmCl _r at 70°C.	115
Fig. 7.5: Variation of R _{ct} of iron in clear and polluted 7.0% NaCl in the absence and presence of 7.0 ppm of lanthanide compounds at 70°C as obtained from EIS measurements.	١١٦
Fig. 7.5°: Inter modulation spectrum for iron metal in clear 7.0% NaCl in the absence and presence of various concentrations of LaCl _r at 70°C.	119
Fig. 7.57: Inter modulation spectrum for iron metal in clear 7.0% NaCl in the presence of various concentrations of CeCl _r at 70 °C	١٢.
Fig. 7.27: Inter modulation spectrum for iron metal in clear 7.0% NaCl in the presence of various concentrations of SmCl _r at 70 °C.	171
Fig. 7.4. Inter modulation spectrum for iron metal in polluted 7.0% NaCl in the absence and presence of various concentrations of LaCl _r at 70 °C.	177
Fig. $^{\tau, \xi q}$: Inter modulation spectrum for iron metal in poluted $^{\tau, \circ}$ % NaCl in the presence of various concentrations of CeCl _r at $^{\tau \circ \circ}$ C.	١٢٣

Fig. $r.\circ \cdot$: Inter modulation spectrum for iron metal in poluted $r.\circ %$ NaCl in the presence of various concentrations of SmCl _r at $r.\circ %$.	١٢٤
Fig. 7.01: SEM spectrum of iron before and after immersion for £\(\Lambda\) h in clear 7.0% NaCl solution without and with different concentrations of SmCl ₇ .	١٢٨
Fig. 7.07: SEM spectrum of iron before and after immersion for £\(\Lambda\) h in polluted 7.0\(\Lambda\) NaCl solution without and with different concentrations of SmCl ₇ .	179
Fig. 7.07: SEM spectrum of iron before and after immersion for $\xi \wedge h$ in clear 7.0% NaCl solution with $\gamma \cdots$ ppm of lanthanide chlorides compounds.	۱۳.
Fig. 7.04: SEM spectrum of iron before and after immersion for 5h h in polluted 7.0% NaCl solution with 7.0 ppm of lanthanide chlorides compounds.	171
Fig. T.oo: EDX spectrum of iron before and after immersion for £\(\Lambda \) h in clear T.o\(\Cappa \) NaCl solution without and with different concentrations of SmCl _T .	١٣٣
Fig. 7.07: EDX spectrum of iron before and after immersion for $\xi \wedge h$ in polluted 7.0% NaCl solution without and with different concentrations of SmCl ₇ .	172
Fig. 7.0%: EDX spectrum of iron before and after immersion for $\xi \wedge h$ in clear 7.0% NaCl solution with $\gamma \cdots ppm$ of lanthanide chlorides compounds.	170
Fig. 7.0%: EDX spectrum of iron before and after immersion for $\xi \wedge h$ in polluted 7.0% NaCl solution with $\gamma \cdot \cdot \cdot$ ppm of lanthanide chlorides compounds.	١٣٦

List of Tables

	Page
Table ".1: Effect of concentration of lanthanide compounds on the electrochemical parameters of iron in clear ".o% NaCl at "oo".	٦٣
Table 7.7: Effect of concentration of lanthanide compounds on the electrochemical parameters of iron in polluted 7.0% NaCl at 70°C.	٦٤
Table ".": The inhibition efficiencies (I%) of different concentrations of lanthanide compounds for the corrosion of iron in clear ".°% NaCl at ''°°C.	 ১০
Table 7.4: The inhibition efficiencies (I%) of different concentrations of lanthanides compounds for the corrosion of iron in polluted 7.0% NaCl at 70°C.	२०
Table \P.o: Equilibrium constant (K_{ads}) , free energy of binding (ΔG^o_{ads}) and number of active sites $(1/y)$ of lanthanide chlorides for iron in clear \P .o% NaCl solution.	٧٤
Table ".": Equilibrium constant (K_{ads}) , free energy of binding (ΔG^o_{ads}) and number of active sites $(1/y)$ of lanthanide chlorides for iron in polluted ".°% NaCl solution.	٧٤
Table 7.7: Effect of temperature on the electrochemical parameters of 7 · · ppm of lanthanides compounds for iron in clear 7.0% NaCl.	٨٤
Table 7. A: Effect of temperature on the electrochemical parameters of 7 · · ppm of lanthanide compounds for iron in polluted 7.0% NaCl.	٨٥
Table 7.9: Effect of temperature on the inhibition efficiency of 7 ppm of lanthanide compounds for iron in clear 7.0% NaCl.	٨٦
Table ": Effect of temperature on the inhibition efficiency of ' ppm of lanthanide compounds for iron in polluted " NaCl.	٨٦

Table ".' : Thermodynamic activation parameters for dissolution of iron in clear ".°% NaCl in the absence and presence of " ppm of lanthanide compounds.	9 ٢
Table 7.17: Thermodynamic activation parameters for dissolution of iron in polluted 7.0% NaCl in the absence and presence of 7.0 ppm of lanthanide compounds.	9 Y
Table ".": E_{pitt} at different concentration of lanthanide compounds for iron in clear and polluted ".o% NaCl at "ooC.	١
Table 7.14: Impedance data for corrosion of iron in clear 7.0% NaCl in the absence and presence of different concentrations of lanthanide compounds at 70°C.	112
Table 7.10: Impedance data for corrosion of iron in polluted 7.0% NaCl in the absence and presence of different concentrations of lanthanide compounds at 70 °C.	110
Table 7.17: Electrochemical parameters obtained by EFM technique for iron in clear 7.0% NaCl in the absence and presence of various concentrations of lanthanide compounds at 70°C.	170
Table 7.17: Electrochemical parameters obtained by EFM technique for iron in polluted 7.0% NaCl in the absence and presence of various concentrations of lanthanide compounds at 70°C.	١٢٦
Table 7.14: pH values From Sm ,Ce and La solutions according to the different concentrations.	1 2 •

1. Introduction

1.1. What is Corrosion?

Corrosion is the deterioration of materials by chemical interaction with their environment. The term corrosion is sometimes also applied to the degradation of plastics, concrete and wood, but generally refers to metals. The most widely used metal is iron (usually as steel).

1.7. Chemistry of Corrosion

Common structural metals are obtained from their ores or naturallyoccurring compounds by the expenditure of large amounts of energy. These metals can therefore be regarded as being in a metastable state and will tend to lose their energy by reverting to compounds more or less similar to their original states. Since most metallic compounds, and especially corrosion products, have little mechanical strength a severely corroded piece of metal is quite useless for its original purpose. Virtually all corrosion reactions are electrochemical in nature, at anodic sites on the surface the iron goes into solution as ferrous ions, this constituting the anodic reaction. As iron atoms undergo oxidation to ions they release electrons whose negative charge would quickly build up in the metal and prevent further anodic reaction, or corrosion. Thus this dissolution will only continue if the electrons released can pass to a site on the metal surface where a cathodic reaction is possible. At a cathodic site the electrons react with some reducible component of the electrolyte and are themselves removed from the metal. The rates of the anodic and cathodic reactions must be equivalent according to Faraday's Laws, being determined by the total flow of electrons from anodes to cathodes which is called the "corrosion current", I_{corr}. Since the corrosion current must also flow through the electrolyte by ionic conduction, the