

STUDIES ON THE FOSSIL MANGROVES OF THE WESTERN DESERT OF EGYPT

A Thesis Submitted to the Faculty of Science Ain Shams University

For the Degree of Doctor of Philosophy of Science

(Botany)

By

Hussien Abd El- Rhman Bkhat M.Sc. (2003)

Supervised by

Wagieh El-Sayed El-Saadawi

Prof. of Palaeobotany and ex-head of Botany Department Faculty of Science Ain Shams University

Rifaat Abd El Kreem Osman Abd El Kreem

Prof. of Stratigraphy in Geology Department Faculty of Science Benha University

Marwa Wafeeq Abdel-khaliq Ibraheem El-Faramawi

Lecturer in Palaeobotany Botany Department Faculty of Science Ain shams University

かり かりりけ

الله في خلق السَّمُواتِ وَالأرْض وَاخْتِلْفِ اللَّيْلُ وَالْمَالُ

لآيَاتٍ لأولِي الألبَابِ ﴿ [١٩٠]

صدق الله العظيم

(آل عمران)

This thesis entitled:

Studies on the fossil mangroves of the Western Desert of Egypt

Written by: Hussien Abd El- Rhman Bkhat Has been approved for Botany Department, Ain Shams University

Date
Date
Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

To My Mother and Father

I can't repay the lessons that you taught when I was small. Or give you gift for gift the daily treasures I recall... I can't return encouragement and loving words of praise. In quite the way you did for me through all my childhood days. But there is one gift that I can give; it's

all the love you've earned.

For love is what you always taught...

And love is what I learned.

Hussien Abd El-Rhman Bkhat

degree of Doctorate of the Philosoph University, is the result of my own invest	
	_Candidate (Hussien Bkhat)
	_ Supervisor (Prof. Wagieh El- Saadawi)
	_ Supervisor (Prof. Rifaat Osman)
	_ Supervisor (Dr. Marwa El-Faramawi)
I hereby certify that the work embodi accepted in substance for any degree, and other degree.	
	_Candidate (Hussien Bkhat)

I hereby declare that the work contained in this thesis, now submitted for the

ACKNOWLEDGEMENTS

All the thanks are first and last to Allah

I express my sincere thanks to Prof. Wagieh El-Saadawi for his efforts to resolve difficulties and discussions aimed to clarify the information on how to deal with the problems that I faced in this work. I am in fact both honored and lucky to work under his supervision.

This study would not have been possible without the cooperation and support of Prof. Rifaat Osman (Geology Department, Benha University), for guiding me in this area, of geology, and for all the efforts that he has done, his generous assistance and field education as well as support throughout this work.

Many thanks to Dr. Marwa Wafeeq El-Faramawi for supervision and kind help throughout this work and I also give my deepest thanks to Assistant Prof. Marwa Kamal-El-Din for her heartfelt support, encouragement and kind help with the identification of petrified wood species.

Special thanks are to Prof. Mohamed El-Sayed Tantawy Head of Botany Dept., Prof. Amira Ahmed Hasaneen, ex-head of Botany Dept., and Prof. Raefa Ahmed Hasaneen Formerhead of Botany Dept., for all the efforts they have done for the benefits of research and researchers in the department.

I extend my thanks also to Dr. Ahmed Khalf, lecturer in Botany, Women's College for Art, Science and Education, Ain Shams University for company and guidance during an excursion to the locality of extant mangrove in Egypt, and for providing me with relevant literature.

In addition, I am indebted to the Egyptian Environmental Affairs Agency (EEAA) for their support.

Heartfelt thanks to Prof. Phillip Gingerich and Prof. Murray R. Gregory for providing relevant literature and to Prof. Phillip Gingerich again for open discussions. Thanks to Dr. Said El Shikh (El Tebeen Institute of Metals, Helwan, Egypt) for chemical determination of Strontium Sulfate.

To my parents, my wife and my daughters Hagar, Basant, Rahma and Sara for sharing whatever life brings on.

This work is dedicated in loving memory of late Geologist Yousri Attyia for his kind supervision. I also thank him for leading me in the magnificent field of geology, and for all the efforts he has done, his generous help, encouragement as well as support throughout the early part of this work.

CONTENTS

List of Figures	Ι
List of plates	II
List of Tables	IV
Abstract	V
Introduction	1
Part I : On the mangroves of Bahariya Oasis:	
- Study area and Geology	17
- The Bahariya Formation	18
- The Hefhuf Formation	20
- Material	23
- Methods	24
- Results	26
- Osmundaceous fern rhizomes	26
- The mottles	31
Part II : On the mangroves of Wadi El-Hitan:	
- Study area and Geology	35
- The Formations of Wadi El-Hitan	36
- Birket Qarun Formation	36
- Qasr El-Sagha Formation	39
- Foraminiferal data and age determination	42
- Material	43
- Methods	45
- Micropalaeontological studies	46
- Results	47
- The <i>Nypa</i> -like rhizome and Leaflet impression	48
-Pneumatophore-like casts	52
- Cable root-like casts and prop root-casts (primary	
and secondary branches	58
- Drift wood	64
- Siphons of bivalvia	66
- Echinodermata-antenna	68
Part III: On the mangroves of Gebel Qatrani:	
- Study area	70
- Geology and Gebel Qatrani Formation	71
- Material	75
- Methods	75
- Results	76
- Fossil mangrove remains	77

Bombacoxylon owenii86Detarioxylon aegyptiacum82Dichrostachyoxylon sp84Discussion and Conclusions86Summary12References12Glossary and Appendix12Arabic Summary7Arabic Abstract12	- Three Silicified wood pieces	80
Dichrostachyoxylon sp.84Discussion and Conclusions86Summary17References1Glossary and Appendix12Arabic Summary7	Bombacoxylon owenii	80
Discussion and Conclusions. 86 Summary. 12 References. 12 Glossary and Appendix. 12 Arabic Summary. 7	Detarioxylon aegyptiacum	82
Summary	Dichrostachyoxylon sp	84
References	Discussion and Conclusions	86
Glossary and Appendix	Summary	110
Arabic Summary	References	112
· ·	Glossary and Appendix	129
Arabic Abstract	Arabic Summary	۲
1111010 110011100	Arabic Abstract	١

LIST OF FIGURES

Number		Page
1.	Physical and biological components of mangrove	
	ecosystems	4
2.	Distribution and biogeographical provinces of the	
	world's mangrove forests	7
3.	Distribution of mangrove wetlands in the world	
	including Egypt	8
4.	Geographic distribution of Nypa	9
5.	The location of the study areas (Bahariya Oasis, Wadi	
	El-Hitan and Gebel Qatrani)	16
6.	Map of Egypt showing location of Bahariya	
	Oasis	18
7.	Geological map of Bahariya Oasis, showing study area	
	and some other localities	22
8.	Geological map of Wadi El-Hitan showing localities	
	and formations discussed in the stratigraphical	
	section	40
9.	Geological map of Fayum showing localities and	
	formations discussed in the text.	73
10.	Section in Gebel Qatrani Formation	74
11.	World maps of four geological eras, from early	
	Cretaceous to present day	104
12.	Cenomanian paleogeographic reconstruction for 94	
	Mya and the paleolocation of Bahariya Formation	
	deposits	108

LIST OF PLATES

Number		Page
1.	Some of the fossil rhizome samples of Gebel Ghorabi	28
2.	Transverse sections in fossil Osmunda rhizome	29
3.	Cross sections of fossil rhizome samples	30
4.	Isolated New Zealand mangrove	32
5.	Fossil mottles	33
6.	Mottles from <5 to >20 mm across.	34
7.	Part of leaflet of extant Nypa fruticans palm, Fossil	
	dichotomized rhizome, Leaflet impression of fossil	
	Nypa fruticans? on rock at Wadi El- Hitan, Rhizome cast	
	of Nypa fruticans? Showing emerging bud	49
8.	Extant 1. Nypa fruticans palm taken from	
	www.wildsingapore.com, 2. shoot system cast of	
	dichotomizing Nypa fruticans in Wadi El-Hitan area,3.	
	cowpats of living Nypa fruticans	50
9.	Fossil Nypa-rhizomes	51
10.	1.Line drawings of different types of mangrove roots	
	for the purpose of comparison with the fossils,2,3. fossil	
	pneumatophore-like casts in situ.	54
11.	Pneumatophores: extant and fossil	55
12.	Pneumatophores of Avixennia trees and pneumatophore-	
	like casts.	56
13.	Mangrove structures; living and fossil	57
14.	Fossils compare with living Rhizophora	60
15.	Cable roots; living and fossil	61
16.	Different root types of mangroves	62

17.	Living and fossil cable roots	63
18.	Thin sections in drifted fossil Dicot plant woods,	
	showing vessels and rays	65
19.	1, 3, 4, and 5: Celestite filled siphons of the Camp White	
	layer of Wadi El-Hitan. 2, close view of adventitious	
	roots of palm tree trunk (for comparison) and 6	
	Teredolites borings in modern wood	67
20.	Echinodermata fossil remains	69
21.	Mangrove rhizoliths and cable roots	78
22.	Fossil mangrove roots.	79
23.	Thin sections in petrified wood of Bombacoxylon	
	owenii	81
24.	Thin sections in petrified wood of Detarioxylon	
	aegyptiacum	83
25.	Thin sections in petrified wood of Dichrostachyoxylon	
	SD	85

LIST OF TABLES

Number		Page
1.	Formations of Cretaceous and paleogene periods and	
	Members of the Bahariya Formation	21
2.	Co-ordinates and elevations of the three study sites in	
	Bahariya Oasis	24
3.	Formations of Eocene period in Wadi El-Hitan and	
	Members of Birket Qarun Formation	40
4.	Wadi El Hitan Samples Locations	44
5.	Gebel Qatrani samples locations	75
6.	Plants fossil wood in Gebel Qatrani	76

ABSTRACT

The present study was carried at areas situated throughout the epochs: Cretaceous, Eocene and Oligocene of Western Desert of Egypt. These areas are Bahariya Oasis, Wadi El-Hitan and Gebel Qatrani respectively.

The floral diversity and ecological characteristics of mangrove plant fossils suggest the existence of mangroves correlated with the climate change and the fluctuation of the sea-shore line from the Cretaceous (Bahariya) to the Oligocene (Gebel Qatrani). The fossils of mangrove plants are compared to modern mangrove species.

A re-examination of fossil evidence of *Avicennia*, *Nypa*, *Rhizophora* and *Osmunda* reveals that the modern mangrove flora was pantropic by the Eocene in Wadi El-Hitan, and appears to have originated during Cretaceous times. The associated invertebrates, especially mollusks and foraminifera, further support the assertion that a modern mangrove ecosystem was established only during the earliest Eocene times in Wadi El-Hitan.

INTRODUCTION

In a broad sense, the term "mangrove" often refers to both the plants and the forest community. Thus, in order to avoid confusion (Macnae, 1968) suggested a new term; "Mangal" that should refer to the forest community while in his opinion "mangrove" should refer to the individual plant species.

And in an attempt for a further definition (Duke, 1992) defined a mangrove as, "...a tree, shrub, palm or ground fern, generally exceeding half a meter in height, and which normally grows above mean sea level in the intertidal zone of marine coastal environments, or estuarine margins. " while according to (Blasco *et al.*, 1996) the term is considered an ecological term that refers to a taxonomically diverse assemblage of trees and shrubs that form the dominant plant communities in tidal, saline wetlands along sheltered tropical and subtropical coasts.

Chapman (1976) mentioned that looking for the origin of the word itself revealed that the term "mangrove" is also used as an adjective, as in "mangrove tree" or "mangrove fauna." Mangrove forests are sometimes called "tidal forests", "coastal woodlands", or "oceanic rain forests." And that the word "mangrove" is usually considered a compound of the Portuguese word "mangue" meaning "man made" and the English word "grove" meaning "garden". Hence mangrove would mean "man made garden".