Ocular Multiparticulate Delivery Systems for Methazolamide

A thesis submitted in the partial fulfillment of the requirements for the Master Degree in Pharmaceutical Sciences (Pharmaceutics)

by

John Youshia Kamal

Bachelor of Pharmaceutical Sciences, 2006, Ain Shams University Teaching assistant, Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Abdelhameed El Shamy

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Dr. Samar Mansour Holayel

Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Amany Osama Kamel

Lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial Pharmacy
2012

Acknowledgment

First and foremost thanks to God for helping me to fulfill this work.

I would like to express my deepest appreciation and sincere gratitude to **Professor Dr. Abdelhameed El Shamy**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for his instructive supervision, kind help and generous attitude throughout the development of this work.

I offer my sincerest gratitude to my supervisor, **Dr Samar Mansour**Holayel, Associate Professor of Pharmaceutics and Industrial Pharmacy,

Faculty of Pharmacy, Ain Shams University, who has supported me
throughout my thesis with her patience and knowledge and provided me
extensive personal and professional guidance and taught me a great deal
about both scientific research and life in general.

I would especially like to thank **Dr. Amany Osama Kamel**, Lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, as my teacher and mentor; she bore a lot of work load until this thesis was completed and taught me more than I could ever give her credit for here. One simply could not wish for a better or friendlier supervisor.

I like to thank the staff members of the Research Ophthalmology Institute, Giza, for their help during the in vivo studies of this thesis. I also like to thank all my colleagues in the Department of Pharmaceutics and Industrial Pharmacy for their valuable help, support and encouragement.

Finally I would like to express my deepest thanks to my parents, for their patience throughout the whole work carried out in this thesis.

List of Contents

Item	Page
List of Abbreviations	IV
List of Tables	V
List of Figures	VIII
Abstract	XII
General Introduction	1
Scope of work	25
Chapter I: Preparation and evaluation of methazolamide	
cationic nanostructured lipid matrices	
Introduction	27
Experimental	33
Methodology	35
Determination of λ_{max} of MZA	35
Construction of the calibration curve of MZA in distilled water and phosphate buffer saline	35
Preparation of MZA loaded NLMs	35
Preliminary study of the influence of various formulation parameters on drug entrapment efficiency and particle size	36
Factorial design of the experiments	39
Characterization of the prepared NLMs and SLNs	41
Data analysis	44
Results and Discussion	46
Determination of λ_{max} of MZA	46
Calibration curve of MZA in distilled water and phosphate buffer saline	46
Preliminary study of the influence of various formulation parameters on drug entrapment efficiency and particle size of MZA loaded NLMs	50
Effect of variables of the factorial design on optimized MZA loaded NLMs	57
1- EE% response	57
2- Particle size (PS) and Polydispersity index (PDI) response	61
3- Zeta potential (ZP) response	71
4- Particle morphology using transmission Electron microscope	74

T I 1 CMTAC NUM 1CINI	7.0
5- <i>In vitro</i> release of MZA from NLMs and SLNs	76
6- Differential scanning calorimetry	80
7- X-ray diffraction	84
8- Effect of aging	86
Conclusion	94
Chapter II: Preparation and evaluation of	
methazolamide cationic nanostructured lipid carriers	0.0
Introduction	98
Experimental	103
Methodology	105
Preparation of MZA loaded NLCs	105
Factorial design of the experiments	105
Characterization of the prepared NLCs	108
Data analysis	110
Results and Discussion	111
Effect of variables of the factorial design on optimized	111
MZA loaded NLCs	
1- EE% response	111
2- Particle size (PS) and Polydispersity index (PDI)	117
response	
3- Zeta potential (ZP) response	130
4- Particle morphology using transmission Electron	134
microscopy	100
5- <i>In vitro</i> release studies of MZA from NLCs	139
6- Differential scanning calorimetry	143
7- X-ray diffraction	147
8- Effect of aging	149
Conclusion	156
Chapter III: Sterilization of methazolamide cationic	
nanostructured lipid matrices and nanostructured lipid	
carriers	
Introduction	160
Experimental	166
Methodology	167
Sterilization by steam (Autoclaving)	167
Sterilization by gamma irradiation	167
Sterility testing	167
Characterization of the sterilized NLMs and NLCs	168

Data analysis	170
Results and Discussion	171
Sterilization by steam (Autoclaving)	172
Sterilization by gamma radiation	177
Conclusion	187
Chapter IV: In vivo studies on methazolamide cationic	
nanostructured lipid matrices and nanostructured lipid	
carriers	
Introduction	189
Experimental	191
Methodology	192
<i>In vivo</i> study on selected cationic MZA loaded NLMs and	192
NLCs	
Assessment of ocular irritancy of MZA loaded NLCs	193
Data analysis	194
Results and Discussion	195
In vivo study on MZA loaded NLMs and NLCs	196
Assessment of ocular irritancy of MZA loaded NLCs	201
Conclusion	204
Summary	206
References	217

List of Abbreviations

Analysis of variance	ANOVA
Carbonic anhydrase inhibitors	CAI
Cetostearyl alcohol	CSA
Cetyl alcohol	CA
Crystallinity index	CI
Differential scanning calorimetry	DSC
Distilled water	DW
Dynamic light scattering	DLS
Entrapment efficiency percentages	EE%
Food and drug administration	FDA
Generally regarded as safe	GRAS
Hydrophile lipophile balance	HLB
Intraocular pressure	IOP
Isopropyl myristate	IM
Kilogray	KGy
Labrafac Lipophile® WL 1349	LL
Methazolamide	MZA
Nanostructured lipid carriers	NLCs
Nanostructured lipid matrices	NLMs
Particle size	PS
Phosphate buffered saline	PBS
Polydispersity index	PDI
Primary angle-closure glaucoma	PACG
Primary open-angle glaucoma	POAG
Solid lipid nanoparticles	SLNs
Stearylamine	SA
Transmission electron microscope	TEM
Zeta potential	ZP

List of Tables

Table no.	Table Name	Page
1	Composition of MZA loaded NLMs preliminary formulations used to study effect of different formulation parameters	38
2	The factorial design independent variables and their levels for the preparation of MZA loaded NLMs	40
3	Composition of the prepared MZA loaded NLMs and SLNs formulations	40
4	Relationship between concentration of MZA and absorbance at λ_{max} 290 nm in distilled water	48
5	Relationship between concentration of MZA and absorbance at λ_{max} 289 nm in phosphate buffered saline (pH=7.4)	49
6	Effect of lipid concentration, lipid mixture and initial drug amount on EE%, amount of drug entrapped, PS, PDI of MZA loaded NLMs	56
7	EE% of MZA loaded NLMs and SLNs formulations	59
8	ANOVA statistical analysis for EE% response of MZA loaded NLMs according to the factorial design	59
9	Particle size and polydispersity index of MZA loaded NLMs and SLNs prepared according to the factorial design	64
10	ANOVA statistical analysis for mean PS response of MZA loaded NLMs according to the factorial design	68
11	ANOVA statistical analysis for PDI Response of MZA loaded NLMs According to the Factorial Design	68
12	Zeta potential of MZA loaded NLMs prepared according to factorial Design	72
13	ANOVA statistical analysis for ZP Response of MZA loaded NLMs according to the factorial design	72
14	<i>In vitro</i> release data of MZA from NLMs formulations (NLM-5, NLM-6 and NLM-9) compared to SLN-1, in phosphate buffered saline at 37°C	78

15	Melting peaks, enthalpies and crystallinity of MZA, physical mixture, unloaded NLM-9 and MZA loaded NLM-9 according to DSC results	83
16	The factorial design independent variables and their levels used for the preparation of MZA loaded NLCs	107
17	Composition of the prepared MZA loaded NLCs according to the factorial design	107
18	Entrapment efficiency percentages of MZA loaded NLCs prepared according to factorial design	113
19	Main effect of different factors on the EE% of MZA in the prepared NLCs	115
20	Particle size and polydispersity index of MZA loaded NLCs prepared according to the factorial design	118
21	Main effect of different factors on PS response of MZA loaded NLCs according to the factorial design	126
22	Main effect of different factors on PDI Response of MZA loaded NLCs according to the Factorial Design	126
23	Zeta potential of MZA loaded NLCs prepared according to factorial Design	132
24	Main effect of different factors on ZP response of MZA loaded NLCs according to the factorial design	132
25	In vitro release of MZA from NLCs formulations (Formulae NLC-L1, NLC-L3, NLC-M1 and NLC-M3) in PBS at 37°C	141
26	Melting peaks and crystallinity of MZA, physical mixture and MZA loaded NLCs formulations (NLC-L1, NLC-L3, NLC-M1 and NLC-M3) according to DSC results	146
27	Effect of aging on the prepared MZA loaded NLCs based on PS and macroscopical examination	152
28	Comparison between the different methods of sterilization	165
29	Effect of sterilization by autoclaving on EE%, PS, PDI and ZP of the selected MZA loaded NLMs	175
30	Effect of autoclaving on EE%, PS, PDI and ZP of the selected MZA loaded NLCs	176
31	Effect of sterilization by gamma radiation on selected MZA loaded NLMs and NLCs formulations	178
	•	

32	Effect of gamma radiation on EE%, PS, PDI and ZP of the selected MZA loaded NLMs and NLCs formulations	179
33	<i>In vitro</i> release data of MZA from NLMs and NLCs formulations (NLM-9, NLC-L3 and NLC-M3) before and after gamma sterilization (5 KGy), in PBS at 37°C	183
34	Effect of topically administered MZA loaded NLMs and NLCs formulations on IOP in normotensive rabbits compared to MZA solution	198
35	Analysis of <i>in vivo</i> results for MZA entrapped formulae NLM-9, NL-L3 and NLC-M3 compared to MZA solution	200

List of Figures

Figure no.	Figure Name	Page
1	Vertical section through human eye	2
2	The structure of the cornea	4
3	Schematic representation of hot and cold homogenization techniques for SLN production	18
4	Structure of methazolamide	23
5	Chemical structure of Compritol®	30
6	Chemical Structure of cetyl alcohol.	31
7	Chemical structure of stearyl alcohol.	32
8	Ultraviolet spectrum of MZA in distilled water.	47
9	Ultraviolet spectrum of MZA in phosphate buffered saline at pH=7.4.	47
10	Calibration curve of MZA in distilled water at 290 nm.	48
11	Calibration curve of MZA in phosphate buffered saline at pH=7.4 at 289 nm.	49
12	Main effect plot of different factors on EE% response of MZA loaded NLMs.	60
13	Interaction plot of different factors on EE% response of MZA loaded NLMs.	60
14	Particle size distribution of MZA loaded formulae (a) NLM-1 (b) NLM-2 (c) NLM-3.	65
15	Particle size distribution of MZA loaded formulae (a) NLM-4 (b) NLM-5 (c) NLM-6.	66
16	Particle size distribution of MZA loaded formulae (a) NLM-7 (b) NLM-8 (c) NLM-9.	67
17	Main effect plot of different factors on PS response of MZA loaded NLMs.	69
18	Main effect plot of different factors on PDI response of MZA loaded NLMs.	69
19	Interaction plot of different factors on PS response of MZA loaded NLMs.	70

20	Interaction plot of different factors on PDI response of MZA loaded NLMs.	70
21	Main effect plot of different factors on ZP response of MZA loaded NLMs.	73
22	Interaction plot of different factors on ZP response of MZA loaded NLMs.	73
23	Electron micrographs of MZA loaded NLMs (a) NLM-5 (b) NLM-6 (c) NLM-9.	75
24	Release profiles for MZA loaded NLMs formulations NLM-5, NLM-6, and NLM-9 compared to SLN-1.	79
25	DSC thermograms for (a) Pure MZA (b) Physical mixture (Compritol®, CSA, MZA and SA) (c) Unloaded NLM-9 (d) MZA loaded formula NLM-9.	82
26	X-ray diffraction patterns for (a) MZA (b) MZA loaded NLM-9 (c) Compritol® (d) CSA	85
27	Change in mean PS of MZA loaded NLMs compared MZA loaded SLNs after storage for 1 and 3 months in refrigerator at 4°C.	88
28	Effect of storage for 1 and 3 months on ZP of MZA loaded NLMs containing 0.5 wt% Tween 80 [®] .	91
29	Effect of storage for 1 month and 3 months on ZP of MZA loaded NLMs containing 1 wt% Tween 80 [®] .	92
30	Effect of storage for 1 month and 3 months on ZP of MZA loaded NLMs and SLNs containing 2 wt% Tween 80 [®] .	93
31	Types of NLCs compared to SLNs (a) SLN (b) Imperfect type (c) Amorphous type (d) Multiple type	100
32	Chemical structure of isopropyl myristate.	102
33	Pareto chart of the standardized effects on the EE% response of MZA loaded NLCs at P=0.001.	115
34	Main effect plot of different factors on EE% response of MZA loaded NLCs.	116
35	3-way Interaction plot of different factors on EE% response of MZA loaded NLCs.	116
36	Particle size distribution of formulae containing Labrafac Lipophile and 1 wt% Tween 80® (a) NLC-L1 (b) NLC-L2.	119

37	Particle size distribution of formulae containing Labrafac Lipophile and 2 wt% Tween 80 [®] (a) NLC-L3 (b) NLC-L4.	120
38	Particle size distribution of formulae containing isopropyl myristate and 1 wt% Tween 80 [®] (a) NLC-M1 (b) NLC-M2.	121
39	Particle size distribution of formulae containing isopropyl myristate and 2wt% Tween 80 [®] (a) NLC-M3 (b) NLC-M4.	122
40	Pareto chart of the standardized effects on the PS response of MZA loaded NLCs at P=0.001.	127
41	Pareto chart of the standardized effects on the PDI of MZA loaded NLCs response at P=0.001.	127
42	Main effect plot of different factors for PS response of MZA loaded NLCs.	128
43	Main effect plot of different factors for PDI response of MZA loaded NLCs.	128
44	Interaction plot of different factors for PS response of MZA loaded NLCs.	129
45	Interaction plot of different factors for PDI response of MZA loaded NLCs.	129
46	Pareto chart of the standardized effects on the ZP response of MZA loaded NLCs at p=0.001.	133
47	Main effect plot of different factors for ZP response of MZA loaded NLCs.	133
48	Electron micrographs of MZA loaded NLCs (formula NLC-L1) containing 1 wt% Tween 80 [®] .	135
49	Electron micrographs of MZA loaded NLCs (formula NLC-M1) containing 1 wt% Tween 80 [®] .	136
50	Electron micrographs of MZA loaded NLCs (formula NLC-L3) containing 2 wt% Tween 80 [®] .	137
51	Electron micrographs of MZA loaded NLCs (formula NLC-M3) containing 2 wt% Tween 80 [®] .	138
52	Release profiles for MZA loaded NLCs formulations NLC-L1, NLC-L3, NLC-M1 and NLC-M3.	142
53	DSC thermograms for MZA loaded NLC formulations NLC-L1, NLC-L3, NLC-M1, NLC-M3, physical mixture and MZA.	145

X

54	X-ray diffraction patterns for (a) Compritol® (b) CSA (c) MZA (d) formula NLC-L1 (e) formula NLC-L3 (f) formula NLC-M1 (g) formula NLC-M3	148
55	Change in mean PS of MZA loaded NLCs after storage for 3 months in refrigerator at 4°C	151
56	Effect of storage for 3 months on ZP of MZA loaded NLCs containing LL.	154
57	Effect of storage for 3 months on ZP of MZA loaded NLCs containing IM.	155
58	Release profiles for MZA loaded formulation NLM-9 before and after gamma sterilization (5 KGy).	184
59	Release profiles for MZA loaded formulation NLC-L3 before and after gamma sterilization (5 KGy).	185
60	Release profiles for MZA loaded formulation NLC-M3 before and after gamma sterilization (5 KGy).	186
61	IOP lowering effect of MZA loaded NLMs and NLCs formulations compared to MZA solution.	199
62	Histological examination of control rabbit's corneal tissue.	202
63	Histological examination of rabbit's corneal tissue treated with formulation NLC-L3 twice daily for 10 days.	203
64	Histological examination of rabbit's corneal tissue treated with formulation NLC-M3 twice daily for 10 days.	203

Abstract

Topical administration of methazolamide (MZA) for treatment of glaucoma using lipid nanoparticles as drug delivery carriers will significantly reduce its associated systemic side effects. However solid lipid nanoparticles (SLNs) formulated from one type of lipid (Homolipid) suffer from low drug encapsulation and drug bursting due to crystallization of the lipid into the more ordered β modification leading to decreased drug entrapment and faster drug release. This can be overcome by using mixture of spatially different solid lipids (Heterolipid) to form nanostructured lipid matrices (NLMs) or using mixture of oil and solid lipids to form nanostructured lipid carriers (NLCs). The purpose of this study was to assess the feasibility of using NLMs and NLCs for topical ocular delivery of MZA.

MZA loaded NLMs were successfully prepared adopting heterolipids composed of novel mixtures of Compritol® and cetostearyl alcohol (CSA) and stabilized by Tween 80®. The systems were prepared using the modified high shear homogenization followed by ultrasonication method which avoids the use of organic solvents. A 3² full factorial design was constructed to study the influence of two independent variables namely; the ratio of CSA:Compritol® and the concentration of Tween 80® each in three levels. The dependent variables were the