DETERMINATION OF WHEAT CROP WATER REQUIREMENTS USING REMOTE SENSING TECHNIQUES

By ESLAM FARG AHMED FARG

B.Sc. Agric. Sc. (Agricultural Engineering), Cairo University, 2007.

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCSE

in
Agricultural Science
(Agriculture Mechanization)

Department of Agriculture Engineering Faculty of Agriculture Ain Shams University

2012

Approval Sheet

DETERMINATION OF WHEAT CROP WATER REQUIREMENTS USING REMOTE SENSING TECHNIQUES

By ESLAM FARG AHMED FARG

B.Sc. Agric. Sc. (Agricultural Engineering), Cairo University, 2007.

This thesis for M.Sc. degree has been approved by:

Prof	nir Mohamed Es f. of Agriculture versity.		, Faculty o		ure, Alexandria
Ass	ser Ezzat Arafa ociated Prof. of Shams Universit	•	engineering	g, Faculty	of Agriculture
Prof	I EI - Gany Moh f. Emeritus of A Shams Universit	Agriculture 6	•		of Agriculture

Date of Examination: 29 / 9 / 2012

DETERMINATION OF WHEAT CROP WATER REQUIREMENTS USING REMOTE SENSING TECHNIQUES

By ESLAM FARG AHMED FARG

B.Sc. Agric. Sc. (Agricultural Engineering), Cairo University, 2007.

Under the supervision of:

Dr. Abd El - Gany Mohamed EL - Gindy

Prof. Emeritus of Agriculture engineering, Faculty of Agriculture, Ain Shams University. (Principal Supervisor).

Dr. Mohamed Seif Abd El- Wahed

Lecturer of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. SayedMedany Arafat

Prof. Head of Agriculture Application, Soil, Marine Department, National Authority for Remote Sensing and Space Science.

تقدير الاحتياجات المائية لمحصول القمح باستخدام تقنيات الاستشعار عن بعد

رسالة مقدمة من السلام فرج أحمد فرج العدم القاهرة ، ۲۰۰۷ بكالوريوس علوم زراعية (الهندسة الزراعية) ، جامعة القاهرة ، ۲۰۰۷

للحصول على درجة الماجستير في العلوم الزراعية (الميكنة الزراعية)

قسم الهندسة الزراعية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

تقدير الاحتياجات المائية لمحصول القمح باستخدام تقنيات الاستشعار عن بعد

رسالة مقدمة من

اسلام فرج أحمد فرج الماديق القاهرة ، ٢٠٠٧ بكالوريوس علوم زراعية (الهندسة الزراعية) ، جامعة القاهرة ، ٢٠٠٧

للحصول على درجة الماجستير في العلوم الزراعية (الميكنة الزراعية)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

. سمير محمد إسماعيل أستاذ الهندسة الزراعية كلية الزراعة جامعة الأسكندرية
. ياسر عزت عرفه أستاذ الهندسة الزراعية المساعد _، كلية الزراعة _، جامعة عين شمس
. عبد الغني محمد الجندي أستاذ الهندسة الزراعية المتفرغ كلية الزراعة جامعة عين شمس

تاريخ المناقشة: ٢٠١٢/٩/٢٠١

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالب : اسلام فرج أحمد فرج

عنوان الرسالة : تقدير الاحتياجات المائية لمحصول القمح باستخدام

تقنيات الأستشعار عن بعد

اسم الدرجة : درجة الماجستير في العلوم الزراعية (الميكنة الزراعية)

لجنة الإشراف:

د. عبد الغنى محمد الجندى

أستاذ الهندسة الزراعية المتفرغ ، قسم الهندسة الزراعية ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي) .

د. محمد سيف الدين عبد الواحد

مدرس الأراضي، قسم الأراضي ، كلية الزراعة ، جامعة عين شمس

د. سید مدنی عرفات

رئيس شعبة التطبيقات الزراعية والتربة وعلوم البحار ، الهيئة القومية للأستشعار عن بعد وعلوم الفضاء.

تاريخ التسجيل: ٩ / ٢ / ٢٠٠٩

الدراسات العليا

أ**جيزت الرسالة** بتاريخ: ٢٩ / ٢٩ / ٢٠١٢ ختم الإجازة

موافقة مجلس الجامعة

موافقة مجلس الكلية / / ٢٠١٢

ABSTRACT

Eslam Farg Ahmed Farg: Determination of Wheat Crop Water Requirements Using Remote Sensing Techniques. Unpublished M. Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2012.

Crop water requirements are representing by the actual crop evapotranspiration. Estimation of crop evapotranspiration (ET_C) and crop coefficient using remote-sensing data is essential for planning the irrigation water use in arid and semiarid regions. This study focuses on estimating the crop coefficient (K_C) and crop evapotranspiration (ET_C) using SPOT-4 satellite data integrated with the meteorological data and FAO-56 approach in south Nile Delta, Egypt.

Reference evapotranspiration (ET_O) estimated using FAO Penman-Monteith and tabled single crop coefficient values adjusted to real values. SPOT-4 images geometrically and radiometrically corrected were used to drive the vegetation indices (NDVI and SAVI).

Results indicated that the middle season stage had the highest values of calculated VI's that return to the high reflection from the plant canopy at the near infrared and high absorption at the red wavelength. On the other hand, VI's values of the initial growth stage were lower than the middle season stage and higher than the late season. In addition, the analysis of spectral signatures differences show the late growth stage was the highest reflection overall the visible range (blue, green and red).

The analysis of the calculated and predicted values for crop evapotranspiration (ET_C) and crop coefficient (K_C) show that middle growth stage was higher than the other growth stages. Where the late season was lower and initial growth stage was the lowest.

Multi linear regression MLR analysis applied to develop the crop coefficient (Kc) prediction equations for the different growth stages from vegetation indices. The results showed R² were 0.82, 0.90 and 0.97 as

well as adjusted R^2 were 0.80, 0.86 and 0.96 for developing, mid-season and late season growth stage respectively. Also validation of the empirical equations results showed high correlation between the calculated and the predicted K_C values 96, 93 and 91 for initial, middle and late season growth stages respectively.

Key words: Evapotranspiration, VI's, NDVI, SAVI, K_C, ET_C, Reflection, Nile Delta, MLR.

ACKNOWLEDGEMENT

Now I've reached the end and it is time to express my deep hearted gratitude to all the people who have encouraged me to finish this work. But above all I thank Allah for blessing, mercy, strength that made it possible for me to complete my studies and enabling me to accomplish my thesis.

I would like to begin by saying how greatly indebted I am to my thesis advisor Prof. A. m. El-Gindy, Dr. M. S. Abd El-wahed and Prof. S. M. Arafat who help and guide me through the development of this thesis. Their cooperation, wise advice, suggestion and guidance through the months have brought me to the point of successfully completion of the thesis. Words really fail to thank you for always being interested and spontaneously taking on the responsibility in the progress of my work.

It is my profound privilege to acknowledge gratitude to assistant Dr. M. A. Abo El Ghar. My special thanks are also due all researchers and colleges in National Authority of Remote Sensing and Space Sciences teaching me RS & GIS, and their encouragement, patience and curiosity gave me the required impetus to complete my research.

I would like to thank those researchers in the field of ET modeling, processes and application of remote sensing in agriculture sector especially in irrigation and crop water requirements that unselfishly provided their findings, software and publications, thus greatly contributing to my research.

I have no words to express my heartiest thanks and gratitude to my parents and brother whose affection, sacrifices and blessing have always been the most vital source of inspiration to me.

CONTENTS

LIST OF TABLES	
LIST OF FIGURES	V
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Water sources and use in Egypt	5
2.2. Wheat crop importance	6
2.3. Reference evapotranspiration (ET _O)	6
2.4. Single crop coefficient (K _C)	7
2.5. Duel crop coefficient (K _{Cb})	8
2.6. Crop evapotranspiration(ET _C)	10
2.7. Using remote sensing data in water management	10
3. MATERIALS AND METHODS	25
3.1. Study Area	25
3.2. Meteorological data	26
3.3. Field data	29
3.4. Reference evapotranspiration	29
3.5. Crop coefficient	31
3.5.1. Single crop coefficient Approach	32
3.6. Crop evapotranspiration	36
3.7. Remote sensing data	37
3.7.1. Satellite data	37
3.7.2. Ground based remote sensing measurements	38
3.8. Deriving of vegetation indices	38
3.9. Statistical analysis	39
3.9.1. One way ANOVA and Tukey's HSD post hoc analysis	39
3.9.2. Multiple Linear Regression using Stepwise selection method	41
4. RESULTS AND DISCUSSION	44
4.1. Reference evapotranspiration (ET _O)	44
4.2. Single crop coefficient (K _C)	45
4.3. Vegetation indices	46
4.3.1. Multispectral data analysis	46

4.3.	2. Hyper-spectral data analysis	50
4.4.	Stepwise multi-linear regression analysis	59
4.5.	Predicted crop evapotranspiration (ET _C) and crop coefficient (K _C)	
	maps	65
5.	SUMMARY AND CONCLUSION	71
6.	REFERENCES	74
7.	ANNEX 1	83
8.	ARABIC SUMMARY	

LIST OF TABLES

Table		Page	
1	Some physical and chemical properties of soil in the study area	26	
2	Single (time-averaged) crop coefficients KC and mean		
	maximum plant heights for non-stressed, well-managed crops in	36	
	sub-humid climates (RHmin» 45%, u2» 2 m/s) for use with the	30	
	FAO Penman-Monteith ETO. (Allen et al., 1998)		
3	the SPOT – 4 Satellite Specifications	37	
4	the ASD FieldSpec Specifications	38	
5	Significance of difference between different growth stages		
	according to Tukey's for blue range	52	
6	Significance of difference between different growth stages	52	
	according to Tukey's for green range	32	
7	Significance of difference between different growth stages	53	
	according to Tukey's for red range	33	
8	Significance of difference between different growth stages	54	
	according to Tukey's for near Infra-red NIR range	J -	
9	Significance of difference between different growth stages		
	according to Tukey's for first Short Wave Infra-Red SWIR 1	55	
	range		
10	Significance of difference between different growth stages		
	according to Tukey's for second Short Wave Infra-Red SWIR 2	56	
	range		
11	Results of the stepwise multi linear regression MLR analysis for	60	
	the initial growth stage	00	
12	Results of the stepwise multi linear regression MLR analysis for	62	
	the middle season growth stage	02	
13	Results of the stepwise multi linear regression MLR analysis for		
	the late season growth stage	63	
		~ ~	

14 The correlation between calculated (KC) and predicted (KC) for different growth stages

64

LIST OF FIGURES

Figure		Page	
1	Location of study area SPOT-4 image in false color composition	25	
2	Beni Suief maximum, minimum and average		
	temprature data for 2008/2009 and 2010/2011 wheat	26	
	cultivation seasons		
3	Beni Suief relative humidity data for 2008/2009 and	27	
	2010/2011 wheat cultivation seasons		
4	Beni Suief wind speed data for 2008/2009 and		
	2010/2011 wheat cultivation seasons	27	
5	Beni Suief sun shine hours data for 2008/2009 and	20	
	2010/2011 wheat cultivation seasons	28	
6	Beni Suief Radiation for 2008/2009 and 2010/2011	28	
	wheat cultivation seasons.		
7	Map of Distributed acquired for 16 sample cover the	29	
	variation of crop overall the investigated area		
8	Simplified representations of the (bulk) surface and	31	
	aerodynamic resistances for water vapor flow		
9	Crop growth stages for different types of crops	32	
10	Generalized single crop coefficient approach curve	33	
11	Average $K_{C ini}$ as related to the level of ET_O and the		
	interval between irrigations and/or significant rain	34	
	during the initial growth stage for all soil types when	34	
	wetting events are light to medium (3-10 mm per event)		
12	Average $K_{C ini}$ as related to the level of ET_O and the		
	interval between irrigations greater than or equal to 40		
	mm per wetting event, during the initial growth stage	35	
	for a) coarse textured soils; b) medium and fine textured		
	soils		
13	Crop evapotranspiration under standard ET _C derived	36	
	from reference evapotranspiration ET _O and single crop	30	

	coefficient K _C		
14	The reference evapotranspiration ET _O values for wheat crop 2008/2009 and 2010/2011 seasons	44	
15	Crop coefficient calculated values of initial, middle and late growth stage for 2008/2009 season	45	
16	NDVI for different growth stages for 2008/2009 season.	47	
17	SAVI for different growth stages for 2008/2009 season	47	
18	NDVI for different growth stages for 2010/2011season	48	
19	SAVI for different growth stages for 2010/2011season	49	
20	Mean hyper-spectral signature of wheat crop for each growth stages 2010/2011season.	50	
21	The results of one-way ANOVA analysis Tukey's HSD test for blue range	51	
22	The results of one-way ANOVA analysis Tukey's HSD test for green rage	52	
23	The results of one-way ANOVA analysis Tukey's HSD test for red range	53	
24	The results of one-way ANOVA analysis Tukey's HSD test for Near Infrared range	54	
25	The results of one-way ANOVA analysis Tukey's HSD test for first Short Wave Infra-Red SWIR range	55	
26	The results of one-way ANOVA analysis Tukey's HSD test for second Short Wave Infra-Red SWIR range	56	
27	NDVI _{HS} for different growth stages for 2010/2011season.	57	
28	Mean $NDVI_{HS\ mean}$ for each growth stages for $2010/2011$ season.	57	
29	SAVI _{HS} for different growth stages for 2010/2011season.	58	
30	Mean SAVI HS mean for each growth stages for 2010/2011season	58	
31	Residual K_C by predicted K_C for the initial growth stage	59	