THE USE OF SOME BIOTECHNOLOGICAL METHODS FOR REDUCING ANTI-NUTRITIONAL FACTORS IN LACTATING ANIMAL RATIONS

By

AHMED MAHMOUD ABD EL-TAWAB MOHAMED EID

B.Sc. Agri. Sc. (Animal Production), Cairo University, 2004 M.Sc. Agri. Sc. (Animal Production), Cairo University, 2009

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

THE USE OF SOME BIOTECHNOLOGICAL METHODS FOR REDUCING ANTI-NUTRITIONAL FACTORS IN LACTATING ANIMAL RATIONS

By

AHMED MAHMOUD ABD EL-TAWAB MOHAMED EID

B.Sc. Agri. Sc. (Animal Production), Cairo University, 2004 M.Sc. Agri. Sc. (Animal Production), Cairo University, 2009

This thesis for Ph. D. degree has been approved by:
Dr. Sabbah Mahmoud Allam
Prof. of Animal Nutrition, Faculty of Agriculture, Cairo
University
Dr. Hamdy Mohamed Mohamed Khattab
Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Air
Shams University
Dr. Mahmoud Mohamed Ali Hussein Khorshed
Prof. of Animal Nutrition, Faculty of Agriculture, Ain Shams
University
Dr. Hamdy Mohamed Ahmed El-Sayed
Prof. of Animal Nutrition, Faculty of Agriculture, Ain Shams
University

Date of Examination: 20/4/2013.

THE USE OF SOME BIOTECHNOLOGICAL METHODS FOR REDUCING ANTI-NUTRITIONAL FACTORS IN LACTATING ANIMAL RATIONS

By

AHMED MAHMOUD ABD EL-TAWAB MOHAMED EID

B.Sc. Agri. Sc. (Animal Production), Cairo University, 2004 M.Sc. Agri. Sc. (Animal Production), Cairo University, 2009

Under the supervision of:

Dr. Hamdy Mohamed Ahmed El-Sayed

Prof. of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mahmoud Mohamed Ali Hussein Khorshed

Prof. of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Abd El-Kader Mahmoud Mohamed Kholif

Research Prof. of Dairy Production, Department of Dairy Science, National Research Center

ABSTRACT

Ahmed Mahmoud Abd El-Tawab Mohamed Eid: The Use of some Biotechnological Methods for Reducing Anti-Nutritional Factors for Lactating Animal Rations. Unpublished Ph.D. Thesis, Animal production Department, Faculty of Agriculture, Ain Shams University, 2013.

This study was carried out to investigate effects laboratory produced of Tannase enzyme (Tanozym) on diets containing tannins. *A.niger* was grown as stand cultures in 100ml conical flasks containing tannic acid powder medium. The maximum production of Tannase by *A.niger* was achieved at inoculum ratio of 2% (v/v), 96 hrs of incubation period, initial pH 5.0, yeast extract as a nitrogen sources at a concentration of 0.33 g N/l and palm kernel powder (PKP) as a carbon source at a concentration of 25% (w/v)

Two experiments were carried out to evaluate the effects of Tannase supplementation on in vitro degradation of tannins and in vivo for studying the nutrients digestibility, milk yield and composition by lactating Baladi goats. In the *in vitro* experiment, tannins degradation was determined for PKP supplemented at levels (0, 1.95, 3.9, 5.85 and 7.8U/kg, DM), the maximum removed of total tannins from PKP was achieved at level 5.85 U/kg DM. in the in vitro experiment, dry matter and organic matter disappearance (IVDMD and IVOMD) were determined for control diets (60% CFM and 40% Berseem hay); (T₁) control diet containing different levels of polyethylene glycol (PEG), (MW 20000) (10, 15 and 20 g/kg DM) and (T₂) control diet with addition different levels from Tanozym (3.9, 5.85 and 7.8 U/kg DM). The maximum IVDMD and IVOMD values were observed at 5.85 U/kg DM for Tanozym and 20 g/kg DM for PEG compared with control, but there are no significant (P>0.05) difference when PEG was added at 15 and 20 g/kg DM compared with Control. In the *in vivo* experiment, nine lactating Baladi goats after 7 days of parturition were divided into three groups, three animals each, using 3x3 Latin square designs. The first group was fed on control diet (60% CFM and 40% Berseem hay). The second group was fed on T₁ (control diet plus 15g/kg, DM). The third group was fed T₂ (control diet plus 5.85U/kg, DM). Tanozym supplementation significantly (P<0.05) increased nutrients digestibility, nutritive values, ruminal total volatile fatty acids (TVFA's), and insignificant (P>0.05) increased of ammonia nitrogen (NH3-N), while lower significantly (P<0.05) values of rumen pH treated group compared with the control. Blood serum of animals fed on Tanozym and PEG had higher values of total protein, albumin, globulin, total lipids, urea and glucose and lowest values of AST and ALT compare with control Milk yield was significantly (P<0.05) increased for Tanozym and insignificant (P>0.05) increased for PEG treated groups compared with the control group. However milk composition did not significantly (P>0.05) change for TS%, SNF%, fat%, and ash% and significantly (P<0.05) change for protein% and lactose% among all groups. Tanozym was superior over PEG for improving feed digestion and milk production by Baladi goats.

Keywords: tannins, tannase enzymes, digestibility, lactating goats, rumen and blood serum parameters.

ACKNOWLEDGMENT

I thank **Allah**, the most gracious, most beneficent most merciful for the help and guidance to achieve goals and make possible.

I wish to express my sincere appreciation and deepest gratitude to **Professor Dr. Hamdy M. A. El-Sayed**, Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University for suggesting the problem, continuous supervision support, guidance and constant throughout the course of this work.

Many thanks are also due to **Professor Dr. Abd El-Kader M. M. Kholif,** Research Professor of Dairy Production, Dairy Science Department, National Research Center for his advice and valuable instructions throughout the course of the study, providing all necessary facilities required for the experimental work, continuous help and encouragement.

Deep thanks are due to **Professor Dr. Mahmoud M. A. H. Khorshed**, Professor of Animal Nutrition, Animal Production Department, Faculty of Agriculture, Ain Shams University for his continuous help and suggesting the technique problem during the experimental work of the research.

Recording my Thanks to **Professor Dr. Hussein A. Murad**, Research Professor of Dairy Science, Dairy Science Department, National Research Center for his help and support.

Grateful acknowledgement should be also extended to the staff members of the Department of Animal Production, Faculty of Agriculture, Ain Shams University, and Dairy Science Department, National Research Centre for their offered to make this work possible.

Also, I feel actually indebted to my family especially **my father**, **my mother**, **my wife**, **my sons and my brother and sisters** for encouragement and sincere devotion all the time.

CONTENTS

Contents	Page
LIST OF TABLES	V
LIST OF FIGURES	vi
. INTRODUCTION	1
. REVIEW OF LITERATURE	3
1. Tannins	3
1.1. Classification of tannins	4
1.2. Chemical and physical properties of tannins	4
1.3. Feedstuffs containing tannins	7
2. Reducing tannins effects in animal diets	8
2.1. Inactivation of tannins by supplementing polyethylene	0
glycol (PEG)	8
2.2. Degradation of tannins by tannase enzyme	9
3. Factors affecting of tannase enzyme production	10
3.1. Microorganisms species.	10
3.2. Initial pH of growth medium and pH optimum	13
3.3. Incubation period	17
3.4. Nitrogen sources	17
3.5. Carbon sources	18
3.6. Tannase location.	19
4. Application of tannase enzyme	20
5. Effect of tannins on nutrients digestibility and nutritive	
value	21
6. Effect of tannins on some rumen liquor parameters	25
7. Effect of tannins on some blood parameters	26
8. Effect of tannins on milk production and composition	27
. MATERIALS AND METHODS	29
1. The first stage (In vitro stage)	29
1.1. Laboratory production tannase enzyme trials	29
1.1.1. Fungal strain	29
1.1.2. Microorganism maintenance and inoculum preparation	29
1.1.3. Optimization of fermentation process for tannase enzyme	
production	30
1.1.3.1. Effect of inoculum ratio	30
1.1.3.2. Effect of incubation period	30
1.1.3.3. Effect of initial pH	30
1.1.3.4. Effect of nutrients sources	30
1.1.3.4.1. Effect of nitrogen sources	30
1.1.3.4.2. Effect of carbon sources	30
1.1.4. Enzyme sources.	31

1.1.5. Assay of tannase	31
1.2. Tannins degradation in palm kernel powder (PKP) by	
tanozym	31
1.3. Dry matter (DM) and organic matter (OM) disappearance	32
2. The second stage (In vivo stage)	33
2.1. Digestibility and lactation trails	33
2.1.1. Experimental animals	33
2.1.2. Experimental diets	33
2.1.3. Feeding procedure	34
2.2. Determination of digestion coefficients	34
2.3. Sampling of rumen liquor	34
2.4. Sampling of blood	35
2.5. Sampling of milk	35
2.6. Chemical analysis	35
2.6.1. Feedstuffs and feces analysis	35
2.6.2. Rumen liquor analysis	36
2.6.2.1. Ruminal pH	36
2.6.2.2. Ammonia-nitrogen (NH3-N)	36
2.6.2.3. Total volatile fatty acids (TVFA's)	36
2.6.3. Blood serum analysis	36
2.6.3.1. Total protein	36
2.6.3.2. Albumin	36
2.6.3.3. Globulin	36
2.6.3.4. Albumin (A): globulin (G) ratio	36
2.6.3.5. Transaminases.	36
2.6.3.6. Urea.	37
2.6.3.7. Glucose	37
2.6.3.8. Total lipids.	37
2.6.4. Milk analysis.	37
3. Statistical analysis	37
3.1. Latin square design	37
3.2. Repeated measures for rumen liquor and blood parameter	38
V. RESULTS AND DISCUSSION	39
1. The first stage (In vitro stage)	39
1.1. Laboratory tannase enzyme production	39
1.1.1. Effect of agitation on the production of tannase from A.	
niger	39

1.1.2. Effect of inoculum size on the production of tannase from
A.niger
1.1.3. Effect of incubation period on the production of tannase
from A.niger.
1.1.4. Effect of the initial pH values on the production of tannase
from A.niger.
1.1.5. Effect of nitrogen sources on the production of tannase
from <i>A.niger</i>
A.niger
1.1.7. Effect of PKP concentration in the growth medium on the
production of tannase from <i>A.niger</i>
1.2. Tannins degradable in palm kernel powder (PKP) by
tanozym
1.3. Effect of treatment with tanozym and PEG on <i>in vitro</i>
dry matter and organic matter disappearance
2. The second stage (<i>In vivo</i> stage)
2.1. Effect of experimental diets on digestibility of nutrients
and nutritive value
2.2. Effect of experimental diets on some rumen liquor
parameters
2.2.1. Rumen pH
2.2.2. Rumen Total Volatile Fatty acids
2.2.3. Rumen Ammonia Nitrogen (NH ₃ -N) concentration
2.3. Effect of experimental diets on some blood serum
parameters
2.3.1. Total protein
2.3.2. Albumin
2.3.3. Globulin
2.3.4. Albumin: globulin (A/G) ratio
2.3.5. Glucose
2.3.6. Total lipids
2.3.7. Urea
2.3.8. Aspartate aminotransferase (AST)
2.3.9. Alanin aminotransferase (ALT)
2.4. Effect of experimental diets on milk yield and
composition
2.4.1. Milk yield
2.4.2. Fat corrected milk (4% FCM) yield
2.4.3. Milk composition
2.4.3.1. Total solids

2.4.3.2. Fat	74
2.4.3.3. Solids not fat (SNF)	76
2.4.3.4. Protein	77
2.4.3.5. Lactose	79
2.4.3.6. Ash	81
V. SUMMARY AND CONCLUSION	83
V . REFERENCES	88
Arabic summary	

LIST OF FIGURES

Fig.	Page
1. Hydrolysable tannin molecule with a glucose core	5
2. Condensed tannin (Procyanidin)	5
3. Tannic acid hydrolysis pathway by tannase enzyme	11
4. Selective hydrolysis of galloyl moieties of ellagitannins catalyzed by tannase	11
5. Several hydrolytic reactions catalyzed by tannase	12
6. Effect of agitation on the production of tannase from A. niger.	39
7. Effect of inoculum size on the production of tannase from <i>A.niger</i>	40
8. Effect of incubation period on the production of tannase from <i>A.niger</i>	41
9. Effect of the initial pH values on the production of tannase from <i>A.niger</i>	42
10. Effect of nitrogen sources on the production of tannase from <i>A.niger</i>	43
11. Effect of substrate on the production of tannase from <i>A.niger</i>	45
12. Effect of PKP concentration in the growth medium on the production of tannase from A.niger	46
13. Tannins degradable in palm kernel powder (PKP) by tanozym	46
14. Effect of treatment with tanozym and PEG on <i>in vitro</i> dry matter and organic matter disappearance	48
15. Effect of experimental diets on nutrients digestibility (%) 16. Effect of experimental diets on total digestible nutrients	50
(TDN) (%)	51
17. Effect of experimental diets on digestible crude protein (DCP) (%)	52
18. Effect of sampling time on rumen pH value	53
19. Effect of experimental diets on rumen pH value	54
20. Effect of sampling time on rumen TVFA's (meq/dl)	55
21. Effect of experimental diets on rumen TVFA's (meq/dl)22. Effect of sampling time on rumen ammonia nitrogen	56
concentration (mg/dl)	57
concentration (mg/dl)	58
24. Effect of experimental diets on blood serum total protein, albumin, globulin and A/G ratio	59

25. Effect of experimental diets on blood serum glucose	64
26. Effect of experimental diets on blood serum total lipids	65
27. Effect of experimental diets on blood serum urea	67
28. Effect of experimental diets on blood AST and ALT	68
29. Effect of experimental diets on milk yield (g/h/d)	70
30. Effect of experimental diets on 4% fat corrected milk yield	
(g/h/d)	72
31. Effect of experimental diets on total solids milk yield	
(g/h/d)	74
32. Effect of experimental diets on fat milk yield (g/h/d)	75
33. Effect of experimental diets on solids not fat milk yield	
(g/h/d)	77
34. Effect of experimental diets on protein milk yield (g/h/d)	78
35. Effect of experimental diets on milk lactose yield (g/h/d)	80
36. Effect of experimental diets on milk ash yield (g/h/d)	82
•	

LIST OF TABLES

Tables
1. Bacterial source of tannase
2. Fungal source of tannase
3. Yeasts source of tannase
4. Chemical composition of feed ingredients (on DM basis)
5. Effect of treatment with tanozym and PEG on in vitro dry
matter and organic matter disappearance
6. Digestibility co-efficient of nutrients, nutritive value of the
experimental diets
7. Effect of experimental diets on rumen pH
8. Effect of experimental diets on rumen TVFA's (meq/dl)
9. Effect of experimental diets on Rumen Ammonia Nitrogen
concentration (mg/dl)
10. Effect of experimental diets on serum total protein (g/dl)
11. Effect of experimental diets on serum albumin (g/dl)
12. Effect of experimental diets on serum globulin (g/dl)
13. Effect of experimental diets on serum A/G ratio
14. Effect of experimental diets on serum glucose (mg/dl)
15. Effect of experimental diets on serum total lipids (mg/dl)
16. Effect of experimental diets on serum urea (mg/dl)
17. Effect of experimental diets on serum AST (Units/ml)
18. Effect of experimental diets on serum ALT (Units/ml)
19. Effect of experimental diets on milk yield (g/h/d)
20. Effect of experimental diets on 4% fat corrected milk yield
(g/h/d)
21. Effect of experimental diets on milk total solids of lactating
goats
22. Effect of experimental diets on milk fat of lactating
goats
23. Effect of experimental diets on milk solids not fat of lactating
goats
24. Effect of experimental diets on milk protein of lactating
goats
25. Effect of experimental diets on milk lactose of lactating
goats
26. Effect of experimental diets on milk ash of lactating
goats

INTRODUCTION

It is known that feed contain a variety of nutrients and small amounts of potentially harmful substances such as toxins that have toxic effects. They are normally called anti-nutritional factors (ANFs) by the scientific community as toxins sounds too alarmist. ANFs have an incredible range of biological effects. The reason of presence of ANFs in plants seems to be as a way of storing nutrient or as a means of defending their structure and reproductive elements (Harborne, 1989).

In fact, plants contain thousands of compounds which, depending upon the situations, can have beneficial or deleterious effects on organisms consuming them. Tannins may be regarded as a class of these compounds, which are generally not lethal. They diminish animal productivity but may also cause toxicity during periods of scarcity or confinement when the feed rich in these substances is consumed by animals in large quantities (**Kumar**, 1992).

In an attempt to overcome some of the problems associated with chemical and biological treatment processes, recent researches were focused on the solving environmental problems through the applications of pure enzymes that have been isolated from their producing organisms (Murugan and Al-Sohaibani, 2010).

Despite the antimicrobial properties of tannins, many microorganisms can grow and develop on tannin rich materials. They not only evolved tannin resistant but also utilizing mechanisms. A number of reviews on tannin biodegradation have appeared in the past, providing a general idea on the biodegradation of these polyphenols (William et al., 1986 and Bhat et al., 1998). It is reported that the hydrolysis of tannins could be brought about with the help of tannase enzyme (Aguilar and Gutiérrez, 2001). These enzymes catalyses the hydrolysis of bonds presents in the molecule of the hydrolysable tannins and gallic acid esters

(Lekha and Lonsane, 1997). It plays an important role in the treatment of tannery effluents (Iibuchi et al., 1968).

Tannase can be used in food and beverage industrial products contribute to remove the undesirable effects of tannins. The use of tannase as an ingredient of animal feed would improve the digestibility of the feed (Lekha and Lonsane, 1997). The enzyme has potential used in the treatment of tannery effluents and pre-treatment of tannin containing animal feed (Aguilar *et al.*, 2007 and Murugan and Al-Sohaibani, 2010).

The main objective of this study was to determine the effect of using laboratory produced tannase enzyme (tanozym) to reduce negative tannins effect as anti-nutritional factor in lactating Baladi goats diets on digestion coefficient, nutritive values, rumen and blood parameters and milk production and composition.