Diagnostic Value of Lactoferrin Ascitic Fluid Levels in Spontaneous Bacterial Peritonitis (SBP)

Thesis Submitted for

Partial fulfillment of M.Sc degree in Medical Microbiology and Immunology

Presented By

Mahmoud Roshdy Mohamed El-Ansary

M.B., B.Ch.

Misr University for Science and Technology
Under Supervision of

Dr. Faten Mostafa Ali

Professor of Medical Microbiology & Immunology Faculty of Medicine - Ain Shams University

Dr. Iman Hussein Shehata

Assistant Professor of Medical Microbiology & Immunology Faculty of Medicine -Ain Shams University

Dr. Abd Elfatah Abd Elsalam

Professor of Internal Medicine Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2011

الدلالة التشخصية لللاكتوفيرين في سائل استسقاء البطن في حالات الدلالة التشخصية لللاكتوفيري التلقائي للغشاء البريتوني

توطنة للحصول على درجة الماجستيرفي الميكروبيولوجيا الطبية و المناعة مقدمة من

الطبيب: محمود رشدى محمد الانصارى بكالوريوس الطب و الجراحة العامة جامعة مصر للعلوم و التكنولوجيا تحت اشراف الأستاذ الدكتورة فاتن مصطفى على استاذ الميكروبيولوجيا الطبية و المناعة كلية الطب جامعة عين شمس دكتورة ايمان حسين شحاتة

أستاذ مساعد الميكروبيولوجيا الطبية و المناعة كلية الطب جامعة عين شمس

الاستاذ الدكتور
عبد الفتاح عبد السلام
أستاذأمر اض الباطنة
كلية الطب جامعة عين شمس
كلية الطب
حلية الطب
جامعة عين شمس
حامعة عين شمس

Contents

Content	4
List of Tables	5
List of Figures	7
List of Abbreviations	8
Introduction	11
Aim of the work	16
Review of literature	
Spontaneous Bacterial Peritonitis	17
Lactoferrin	57
Patients and methods	91
Results	99
Discussion	118
Summary and conclusions	131
Recommendation	136
References	137
Arabic Summary	

List of Table

Table number	Title	page
Table (1)	Organisms isolated in SBP patients	20
Table (2)	Percentage of clinical signs and	29
	symptoms among Cirrhotic patients	
Table (3)	Antimicrobial substances of host origin	32
	present in body fluids and organized	
	tissues	
Table (4)	The correlation between SBP variants	43
	and ascitic fluid culture and PMNL	
	count	
Table (5)	Quantities of Lf in human body fluids	63
Table (6)	Antibiotic discs and its concentration	93
Table (7)	Main clinical findings found in cases	100
	compared to controls	
Table (8)	Liver function test of cases and	101
	controls	
Table (9)	Diagnostic parameters of SBP in cases	102
	compared to controls	
Table (10)	LAF concentration in ascetic fluid in	103
	cases compared to controls	
	1	

Table number	Title	page
Table (11)	Risk ratio of Lf unit elevation in SBP	105
Table (12)	Culture results in studied group	106
Table (13)	Bacteriological results of culture in	107
	SBP patient	
Table (14)	Antibiotic sensitivity of the Gram	108
	negative organisms	
Table (15)	Antibiotic sensitivity of the MRSA	109
	isolate	
Table (16)	Different levels of Lf according to	111
	isolated organisms	
Table (17)	Correlation of Lf levels with laboratory	112
	parameters in SBP patients	
Table (18)	Lf levels in relation to clinical	114
	manifestation	
Table (19)	The validity of Lf at 88ng/ml cut of	116
	point	
Table (20)	Sensitivity and specificity of Lf at	117
	different cut of point in identifying	
	SBP patients	
	1	

List of figures

Figure number	Title	page
Figure (1)	The pathogenesis of SBP	37
Figure (2)	The relation between SBP and its	42
	variants	
Figure (3)	Approach to the management of	51
	Suspected SBP	
Figure (4)	Regulation of the inflammatory	59
	response by LAF	
Figure (5)	Boxplot displaying the distribution of	104
	LAF levels in cases and control groups	
Figure (6)	Frequency of isolated organisms	107
	among cases of SBP	
Figure (7)	LAF levels according to the isolated	110
	organisms in SBP cases	
Figure (8)	Scatter diagram demonstrating	113
	correlation between LAF levels and	
	WBCs count among SBP patients	
Figure (9)	ROC curve displaying the	115
	discriminating ability of the regression	
	model including Lf	

List of abbreviation

AF Ascitic fluid

AUC Area under the curve

BA Bactericidal activity

BCG Bovis Calmette Guerin

BSA Bovine serum albumin

CF Cystic fibrosis

CMI Cell- mediated immunity

CNNA Culture- negative neutrocytic ascites

CI Confidence Interval

CS Chondroitin sulfate

CSF Cerebrospinal fluid

DNA Deoxyribo nuclic acid

DTH Delayed type hypersensitivity

ETEC Enterotoxigenic E. coli

HA Hydroxyapatite

HCV Hepatitis C virus

HRP Horseradish peroxidase

HRS Hepatorenal syndrome

HLF Human lactoferrin

IAC International Ascitis Club

LAF Lactoferrin

LDH Lactate dehydrogenase

LPS Lipopolysaccharide

MAb Monoclonal antibody

MDR Multidrug resistance

MNB Monomicrobial Non-Neutrocytic

Bacterascitis

MRSA Methicillin resistant *Staph. aureus*

mCD 14 | Membrane cluster of diffrantiation 14

NADPH Nicotinamide adenine dinucleotide

phosphate

NK Natural killer

OPD O- phenylenediamine

OR Odds Ratio

OVA Ovalbumin

PMNL Polymorphonuclear leucocyte

ROC Receiver operating characteristics

ROS Reactive oxygen species

SBP Spontaneous bacterial peritonitis

sCD14 Soluble cluster of diffrantiation 14 SD Standard deviation SE Standard Error Small intestinal bacterial overgrowth **SIBO** Statistical program for social science **SPSS** Sheepred blood cells **SRBCs TSI** Triple sugar iron Transferrin family TF White blood cells **WBCs**

Introduction

Spontaneous bacterial peritonitis (SBP) is a clinical syndrome in which ascitic fluid becomes infected in the absence of a recognizable cause of peritonitis (*Bernardi et al.*, 1992 and Wilis et al., 2003).

It is one of the most frequent bacterial infections in patients with decompensated liver cirrhosis and ascitis and is associated with high mortality (20-40%). Bacteraemia is thought to precede the development of SBP, mainly as a result of bacterial translocation from the intestinal lumen (Arroyo and Jimenz., 2000).

It may occur as a complication of any disease state that produces the clinical syndrome of ascitis, such as liver cirrhosis (Wilis and Potercucha., 2003).

Decompensated and especially jaundiced patients have impaired reticuloendothelial function with reduced phagocytic activity, low ascitic fluid protein concentration, and opposing activity, all of which predispose to spontaneous infection of the ascitic fluid (*Runyon 2003*).

Most organisms causing SBP are derived from the intestinal microbial flora and *Escherichia coli* are the most frequently isolated organism (*Guarner and Soriano.*, 1997).

Empirical antibiotic therapy should be initiated before the results of ascite fluid culture and must cover the most commonly isolated microbial organisms (*Rimola et al.*, 2000).

During recent years, quinolones are used for primary or secondary prophylaxis in high risk group cirrhotic patients to decrease the incidence of SBP. However, there is a concern that changes of the microbial causes of SBP may have occurred with increasing involvement of quinolone - resistant Gram negative and Gram positive bacteria (*Fernandez et al.*, 2002 and Parsi et al., 2008).

Furthermore, these epidemiological changes in microbial causes of SBP have been associated with the increasing number of invasive procedures and hospitalization of cirrhotic patients in intensive care units, which facilitate the prevalence of infections caused by resistant Gram positive bacteria like MRSA and resistant Gram negative *Pseudomonas (Campiilo et al., 2001 and Wilis et al., 2003).*

Diagnostic paracentesis is used commonly in cirrhotic patients with ascitis to detect the presence of SBP (Fernandez et al., 2002). The diagnostic criterion of SBP is increase in polymorphonuclear cell (PMN) count than 250 cells/ml in the ascitic fluid. Lysis of the PMN during transport to the laboratory could occur leading to false negative results. Moreover manual measurement of the ascetic fluid PMN count is operator dependant, makes quality control difficult, and can delay the diagnosis (Runyon 2003).

Therefore, there has been considerable interest in the development of a bedside test that can diagnose SBP rapidly (Nausbaum et al., 2000).

Lactoferrin (LAF) is a mammalian iron binding protein released by degranulating neutrophils that sequesters iron from pathogens, inhibiting their growth. Its presence in body fluids is proportional to the flux of neutrophils (*Runyon* 2004).

Furthermore, LAF also has been shown to be remarkably stable and resistant to degradation when left in room temperature for extended periods of time. In patients with

cirrhosis and ascitis, LAF concentration in ascitic fluid represents a potential new test for diagnosing spontaneous bacterial peritonitis (*Parsi et al.*, 2008).

Aim of work

- 1. This study aimed to evaluate the significant utility of LAF for the diagnosis of SBP by its titration in ascitic fluid.
- 2. Isolate the main aerobic causative organisms of SBP and identify the antibiotic sensitivity patterns of isolated organism to detect possible resistance to antimicrobials.

Patients and methods

This study included 60 decompensate liver patients with cirrhosis with suspicion of SBP admitted to Medical Department of Ain Shams University Hospitals and Yasine Abd El Gafar Charity Center for Hepatology fulfilling clinical suspected criteria of SBP represented by:-fever, chills, generalized abdominal pain, absent bowel sounds and rebound tenderness.

Exclusion criteria were: patients on antibiotic therapy associated renal or cardiac disease, peritoneal dialysis and abdominal surgery within 3 months of study entry, presence of other causes of neutrocytic ascitis such as pancreatitis, appendicitis, peritoneal carcinomatosis, and T.B.

Thirty six cirrhotic patients with ascitis with no clinical signs of SBP were included as a control group.

SBP patients and control group were subjected to:

- Detailed medical history
- Diagnostic paracentesis
- Analysis of ascitic fluid to assess:
 - 1. WBC's count (neutrophil)
 - 2. Glucose level.
 - 3. Protein level.
 - 4. pH.
 - 5. Specific Gravity.
- Culture of ascitic fluid using blood culture bottles.
- -Isolation & Identification of isolates by conventional bacteriological methods according to (Colle et al., 1996)
- -Antibiotic sensitivity pattern for the isolated bacterial pathogens by disk diffusion method (NCCLS 2003)
- -Measurement of LAF level in ascitic fluid by ELISA.

DEDICATION

TO MY FATHER (ALLAH BLESS HIM)

MY MOTHER

MY WIFE

FOR EVERYTHING THEY DID FOR ME ALL THROUGH THIS STUDY