

Faculty of Pharmacy Ain Shams University

"Molecular Modeling and Synthesis of Certain Fused Heterocyclic Compounds having Potential Antiinflammatory Activity"

By Abeer Hussain Abbas

B.Sc. In Pharmaceutical Science, May 2008 Instructor of Pharmaceutical Chemistry Ain Shams University

Submitted for the partial fulfillment of the Master Degree In Pharmaceutical Sciences (Pharmaceutical chemistry)

Under the supervision of

Dr. Dalal A. Abou El Ella

Professor of Pharmaceutical Chemistry Ain Shams University

Dr. Nasser Saad Mohamed

Associate Professor of Pharmaceutical Chemistry Acting Head of Pharmaceutical Chemistry Department Ain Shams University

Dr. Rabah Ahmed Taha

Lecturer of Pharmaceutical Chemistry Ain Shams University

Cairo, 2013

Acknowledgement

At first I thank and praise ALLAH in a compromise to complete access to this work.

I am sincerely indebted and profoundly grateful to **Dr. Dalal A.Abou El Ella**, Professor of Pharmaceutical Chemistry for her kind supervision and suggestion of the point of this research. I want to express my appreciation to her valuable advice, constant support and continuous guidance during all stages of this work. I really appreciate her continuous efforts to guide the research team in our department to maximize the team work spirit between department staff members. No words can describe my gratitude to her. She's really the kind of the teacher who teaches from the heart not from the book and she's a real leader who teaches each team member to have the responsibility of the work and do it by herself with them. I do really dedicate this thesis to her as being my second mum whom I can never replace.

I am heartily thankful to **Dr. Nasser Saad Mohamed**; Ass. Professor of Pharmaceutical Chemistry for his encouragement, guidance, motivation, enthusiasm, and immense knowledge which enabled me to develop an understanding of the pharmaceutical chemistry concepts. I am extremely grateful to his sincere guidance, fruitful indispensable opinion, continuous interest, and tremendous support throughout the whole work.

I am extremely grateful and sincerely appreciated to **Dr.Rabah Ahmed Taha**, Lecturer of Pharmaceutical Chemistry for her scientific supervision, untiring help, valuable assistance, constant encouragement, priceless guidance, innovative ideas and fruitful opinions throughout the whole practical work and during writing this thesis. I really thank her for her great effort.

I would also like to thank **Dr.Ahmed Esmat**, Lecturer of Pharmacology and Toxicology, faculty of pharmacy; Ain shams University, Cairo, Egypt, for his great sincere

collaboration, untiring help and tremendous effort in performing the biological activity tests, his guidance to drill me in the practical techniques in the field of inflammation and his profound knowledge in this field. He's profoundly thanked for encouraging and inspiring me as a biologist not only a chemist. I was lucky to have the privilege to benefit from his invaluable advice and support.

Great thanks to **Professor Dr. Khaled A. M. Abouzid,** Professor of Pharmaceutical Chemistry and Vice Dean for Educational & Student Affairs for his encouragement, guidance, and motivation to all the department members. I am extremely grateful to his sincere guidance and support throughout the whole work.

I would also like to thank **Eman El Awady**, Assistant Lecturer of Pharmaceutical Chemistry, for her kindness, friendly cooperation, encouragement, continuous aid, and real support throughout the whole work.

I acknowledge with thankfulness every single member of our Pharmaceutical Chemistry department for their friendly cooperation and support. Also I would like to mention my endless gratitude to the staff members of Pharmacology and toxicology department at Faculty of pharmacy, Ain Shams University, and personally **Dr. Reem AbouElnaga**, for their unlimited help and their friendly attitude all over the time of performing the practical biological tests at their department labs as if being one of the staff members.

I am also indebted profoundly to my family especially my mum, who constantly supported me, prayed to me and dreamed of that day since I was an undergraduate student. Many thanks to all my friends who believed that I can do it and pushed me forward in times of over-concern. And finally a special thanks to all my dear students for the faith and hope they planted inside me and being by my side all the time as their sister not only their teacher.

Contents

List of Tables	VII
List of Figures	VIII
List of Abbreviations	XI
Abstract	XIII
1. Introduction	1
1.1. Inflammation	1
1.2. The neurotransmitters and enzymes involved in inflammation:	2
1.3. Therapy for inflammation	6
1.3.1. Non-selective anti-inflammatory agents such as steroids and NSAIDS.	7
1.3.2. Disease modifying anti-rheumatic drugs (DMARDs)	11
1.3.3. Tumor necrosis factor – alpha (TNF-α) inhibitors	12
1.3.4. Target specific therapies	12
1.3.5. Very selective treatments that may be targeted towards certain tissue	14
1.4. Phosphodiesterases	15
1.5. PDE4 isoform:	22
1.5.1. Function of PDE4	22
1.5.2. Structural basis of PDEs catalysis and inhibition:	22
1.5.3. Role of PDE4 inhibitors:	24
1.5.4. Localization of PDE4 isoform	24
1.5.5. Mechanism of action of PDE4 isoform	25
1.5.6. PDE4 inhibitors	26
1.5.6.1. Non selective PDE4 inhibitors	26
1.5.6.2. Selective PDE4 inhibitors	27
1.5.6.2.1. First generation chemically synthesized PDE4 inhibitors	27
1.5.6.2.2. Second generation chemically synthesized PDE4 inhibitors	28

2. Rati	ionale and Design	34
2.1 D	Design of selective PDE4B inhibitors	34
2.1	.1. Identification of the key interactions with the binding site:	35
	.2. Exploration of the previous revealed SAR studies and bioisosteric odifications of the lead compound	37
	1.2.1. Design of new target compounds as selective PDE4B "quinazoline affolds"	37
	1.2.2. Design of new target compounds with phthalamidobenzimidazole beity	42
2.2. \$	Synthetic schemes	44
2.2	2.1. Scheme 1 for synthesis of compounds IIIa-e	45
2.2	2.2. Scheme 2 for synthesis of target compounds VIa-i	46
2.2	2.3. Scheme 3 for synthesis of target compounds IXa-h	47
2.2	2.4. Scheme 4 for synthesis of target compounds XVIa-e	48
3. Res	ults and discussion	49
3.1. (Chemistry	49
3.2. I	Biological evaluation:	61
	2.1. Effect of Test Compounds on carrageenan-induced rat paw edema odel	62
	2.2. The measurement of the effect of tested compounds on TNF- α level in einflammatory exudates in the carrageenan-induced rat edema model	64
	2.3. Examination of the effect of the prepared compounds on the gut acosa "Ulcerogenisity test"	67
	2.4. The measurement of the <i>invitro</i> activity of the prepared compounds via easurement of the enzyme inhibition over PDE4B enzyme	69
3.2	2.4.1. Interpretation of the results	69
4. Mol	lecular Modeling	72
4.1. I	Docking using Discovery Studio Software 2.5	72

4.2. Molecular Modeling Simulation Study	73
4.3. Results and Interpretation	76
4.4. Molecular docking conclusion	91
Conclusion	92
5. Experimental	94
5.1 Chemistry	94
5.1.1 Materials & instrumentation	94
5.1.2. Synthesis	95
5.2. Biological evaluation	115
5.2.1. Chemicals	115
5.2.2. Animals	115
5.2.3. Measurement of paw volume in carrageenan-induced rat edema	a
model	
5.2.4. Statistical analysis	116
5.2.5. Determination of Rat TNF alpha concentration in the inflamma	-
exudates	
5.2.5.1. Principle	116
5.2.5.2. Reagent preparation	117
5.2.5.3. Sample preparation	119
5.2.5.4. Procedure	119
5.2.6. Induction of gastric ulcer:	121
5.2.7. Measurement of the enzyme inhibition by the prepared compound	ands 121
5.2.7.1. Methodolgy	121
5.2.7.2 Materials and conditions of the assay	122
5.3. Molecular modeling	123
5.3.1. Loading the PDE4B enzyme from protein data bank (Pdb)	123
5.3.2. Preparation of the enzyme	123

5.3.3. Identifying the binding pocket	124
5.3.4. Display lead- protein interactions	124
5.3.5. Docking of lead compound	124
5.3.6. Displaying the docking scores	124
5.3.7. Validation of the lead compound docking and selection of proper binding pose	124
5.3.8. Docking of the test set	125
5.3.8.1.Loading the test-set molecules	125
5.3.8.2. Interacive docking	125
5.3.8.3. Displaying the docking scores	125
5.3.9. Displaying the binding pattern of tested compounds	126
6. References	127

List of Tables

Table 1 : Different sub-types of PDEs and their clinical significance 16
Table 2 : Residues lining the active site of PDE4B & PDE4D isoforms35
Table 3: The essential aminoacids residues to be interacted for inhibiton. 36
Table 4: The effect of tested compounds on rat paw volume in carrageenan-induced rat edema model
Table 5: The effect of tested compounds on TNF-α level in the inflammatory exudates in carrageenan-induced rat edema model
Table 6: Ulcer scores obtained from synthesized target compounds IIIe, VIe, IXb and XVId in comparison to indomethacin as a reference compound
Table 7: The effect of synthesized target compounds IIIe, VIe, VIg, VIh, IXa, IXb, IXe and IXg on PDE4B <i>invitro</i> activity at 10 μM
Table 8: The effect of IXb, IXe and IXg tested compounds on PDE4B invitro activity at 50 μM 70
Table 9: The results of screened compound XVId at concentration of 50 μM over PDE4B enzyme 71
Table 10: The Goldscore. Fitness & 2D-diagram of each target compound inside the binding site of PDE4B using GOLD
Table 11: The best target compounds according to GoldFitness Score and

List of Figures

Figure 1: Inflammation process after injury
Figure 2: A sketch diagram showing causes of inflammation and different inflammatory diseases and disorders
Figure 3: Sites of release of chemical mediators and neurotransmitters during inflammation
Figure 4 : Regulatory effects of cAMP on the release of different inflammatory mediators
Figure 5: The role of NSAIDs in inhibition of inflammation
Figure 6: Different chronic inflammatory diseases use anti-TNF alpha markted drugs in treatment
Figure 7: Targets for selective inhibitors during inflammation
Figure 8: Map for PDE4 different isoforms
Figure 9: Structures of the different PDE families constituting the PDE superfamily
Figure 10: The role of PDE4 in different cell types during inflammation25
Figure 11: PDE4 inhibitor effect on inflammation in COPD
Figure 12: (A) Cilomilast (36) co-crystallized with PDE4B active site , (B) Cilomilast (36) co-crystallized at PDE4D active site
Figure 13: The binding site of PDE4B together with compound 43 obtained from (pdb.org) showing the essential interactions with key amino acids in the binding site

Figure 14: Binding mode of quinoline based compound 41 after docking at
PDE4B binding site showing hydrogen bonding of triflouromethyl moiety with
Gln443
Figure 15: 2D interaction diagram of docked quinazoline based reference
compound 46 showing interaction with essential amino acid residues at the active
site of PDE4B enzyme39
Figure 16: Design of proposed target compounds IIIa-e (scheme 1) based on
molecular modifications of reference compound 46
Figure 17. Design of annuaged toward companyeds VII : (asheres 2) and companyeds
Figure 17: Design of proposed target compounds VIa-i (scheme 2) and compounds
IXa-h (scheme 3) based on hybridization between reference compounds
41 and 43
Figure 18: The design of proposed target compounds XVIa-e (scheme 4) based on
structure similarity with apremilast (35) and ibudilast (37) for PDE4B inhibitory
activity
activity
Figure 19: Synthetic approaches for 4-quinazolinone preparation via Pathway A
and Pathway B50
Figure 20: Synthetic approach for preparation of 4-substituted quinazoline
starting from 2-amino benzonitrile derivatives (Pathway C) and steps of 4-
aniilinoquinazoline synthesis from anthranilic acid derivatives (Pathway D)51
Figure 21: Formation of benzimidazole from o-phenylenediamine and formic
acid
aciu
Figure 22: Formation of 2-H benzimidazole from 2-nitro amines
Figure 23: Mechanism of benzimidazole derivatives formation from
orthophenylenediamine and aryl aldehydes58
Figure 24: The effect of tested compounds on TNF-α level in the inflammatory
exudates in carrageenan-induced edema model66

groups using digital video camera mounted at light microscope (A-F)
Figure 26 : Alignment of the lead compound 43 co-crystallized with the X-ray structure before (orange) and after (blue) docking at PDE4B active site (Code: 3GWT)
Figure 27: (A): Alignment of the lead compound 43 co-crystallized with the X-ray structure before (orange) and after (blue) docking at PDE4B active site with 3D representation, (B): 2D diagram showing the binding of lead compound 43 with amino acids at the active site of PDE4B after docking using GOLD
Figure 28: The binding site of PDE4B together with rolipram (18) showing the essential interactions with key amino acids in the binding site
Figure 29: 3D diagram of compound IXb at PDE4B active site showing interaction of different groups with essential amino acids for inhibitory activity 89
Figure 30: 3D diagram of compound IXa at PDE4B active site showing interaction of different groups with essential amino acids for inhibitory activity 89
Figure 31 : 3D diagram of compound IXe at PDE4B active site showing interaction of different groups with essential amino acids for inhibitory activity 90
Figure 32: 3D diagram of compound IXg at PDE4B active site showing interaction of different groups with essential amino acids for inhibitory activity 91
Figure 33: A schematic diagram for determination of TNF alpha by enzyme linked immune-sorbent assay (ELISA)
Figure 34: Serial dilutions preparation for standard during reagent preparation in the ELISA assay
Figure 35: Standard calibration curve of TNF alpha at 450nm

List of Abbreviations:

AC: Adenylate cyclase

Anal.Calcd: Analytical Calculated

A°: Angstrom

BBB: Blood brain barrier

°C: Celsius

CNS: Central nervous system

COPD: Chronic obstructive pulmonary disease

CADD: Computer Aided Drug Design

cAMP: Cyclic adenosine monophosphate

cGMP: Cyclic guanosine monophosphate

COX: Cyclooxygenase enzyme

ELISA: Enzyme-linked immunosorbent assay

EU: European Union

FDA: Food and Drug administration

FT-IR: Fourier transform Infra-red

g: Gram

GI: Gastrointestinal

HD: Huntington's Disease

hr: Hour

HRP: Horseradish peroxidase

IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta

LOX: Lipooxygenase enzyme

LPS: Lipopolysaccharide

MAPK: Mitogen-activated protein kinases

MS: Mass spectroscopy

m.p: Melting point

μM: Micromole

μL: Microliter

mg: Milligrams

mL: Milliliters

min: Minute

nM: Nanomole

NADPH: Nicotinamide adenine dinucleotide phosphate

NO: Nitric oxide

NSAIDS: Non-steroidal anti-inflammatory drugs

NF-kβ: Nuclear factor kappa-light-chain-enhancer of activated B cells

NMR: Nuclear magnetic resonance

PDE: Phosphodiesterase enzyme

PG: Prostaglandins

pdb: Protein data bank

RA: Rheumatoid arthritis

ROS: Reactive oxygen species

r.t.: Room temperature

SAR: Structure activity relationship

S.c.: Subcutaneous

TMB: 3,3',5,5'- tetramethylbenzidine

2D: 2-Dimensional

3D: 3-Dimensional

TNF-α: Tumor necrosis factor alpha

UV: Ultraviolet

UCR: Upstream conserved region

Abstract

Inflammation is a protective body response that develops to get rid of any harmful agent together with the body's immunity. Non-steroidal anti-inflammatory drugs (NSAIDS), the most commonly used non-selective anti-inflammatory agents; exhibit several side effects upon prolonged use especially in treatment of chronic inflammatory diseases. Side effects maybe minimized by the use of selective inhibitors other than non-selective anti-inflammatory agents. Among the most commonly known targets in inflammation cascade is the PDE4 enzyme. The PDEs family consists of 11 isoforms but in our research our target was the PDE4 isoform and in particular PDE4B subtype due to its critical role in inflammation. Well established drugs acting on such target exhibited serious side effects as nausea, vomiting and diarrhea. In this research, the aim was to design and synthesize novel compounds with potential anti-inflammatory activity especially PDE4B inhibitory activity with minimal side effects.

The thesis included six parts:

1-Introduction

It includes definition of inflammation, and different inflammatory mediators secreted in the body during inflammation, one of which is tumor necrosis factor alpha (TNF- α) which is one of the most important cytokine, followed by brief note about PDE family and different PDE subtypes. Then, the role of PDE4 isoform in inflammation is clarified and in particular PDE4B subtype and finally examples from literature for different PDE4 inhibitors especially those acting at PDE4B subtypes.

2-Rationale and design

It emphasizes the design of novel organic compounds for synthesis **IIIa-e**, **VIa-i**, **IXa-h** and **XVIa-e** having potential anti-inflammatory activity against PDE4B enzyme. The design was done by bioisosteric modifications in different potent lead compounds after

structure activity relationship (SAR) study aiming to increase the selectivity towards PDE4B inhibition and to decrease the undesired side effects.

3- Results and Discussions

This part contains the theoretical discussions for the obtained results and divided into two parts:

• Chemistry

It includes a discussion of the different chemical methods for preparing the starting material and intermediates stated in the literature and the used procedures in this research.

• Biological evaluation

Among the novel synthesized target compounds **IIIa-e**, **VIa-i**, **IXa-h** and **XVIa-e**, the titled compounds **IIIb-e**, **VIc-h**, **IXa,b,d-g**, **XVIc,d,e** were tested for their anti-inflammatory activity against standard anti-inflammatory drug (indomethacin) via *invivo* assays as rat paw edema model and measurement of level of decrease in TNF-α levels by sandwiched ELISA technique. The titled compounds **IIIe**, **VIe**, **VIg**, **VIh**, **IXa**, **IXb**, **IXe**, **IXg** and **XVId** were subjected to the *invitro* assay by screening of the target compounds over PDE4B enzyme and comparison of the inhibitory activity of the tested compounds to that of reference compounds used during the experiment.

4 -Molecular Modeling:

The design of novel potential anti-inflammatory agents as PDE4B inhibitors was based on the molecular modeling simulation by direct molecular modeling docking study using the crystal structure of PDE4B enzyme obtained from protein data bank (pdb.org). The practical steps were carried using Discovery Studio Software 2.5, GOLD protocol. The results of PDE4B inhibitory activity obtained in the invitro assay were interpreted and further correlated with the biological activity data.