

تأثير الأضافة على سبيكة قصدير يوتيكتية خالية من الرصاص لتحسين استقرار بنيتها المجهرية

رسالة مقدمة من عصام محمد نصر الدين عبد الحق

المعيد بقسم الفيزياء بكالوريوس علوم و تربية دبلوم عام إعداد معلم (فيزياء) دبلوم خاص إعداد معلم (فيزياء)

> إلى قسم الفيزياء- كلية التربية جامعة عين شمس

للحصول على درجة الماجستير لإعداد المعلم في العلوم (فيزياء)

القاهرة-2006

Ain Shams University Faculty of Education Physics Department

"Alloying Effects in Near-Eutectic Sn-Lead Free Solder for Improving Microstructural Stability"

Thesis

Submitted for the Degree of Master of Teacher 's Preparation of Science (Physics)

By **Essam Mohamed Nasr-El Den**

B.SC. and Education, Gen. Diploma (Physics) and Spec. Diploma (Physics)

To Physics Department Faculty of Education Ain Shams University

2006

صفحة العنوان

اسم الطالب : عصام محمد نصر الدين عبد الحق

الدرجة العلمية: ماجستير إعداد المعلم في العلوم (فيزياء).

القسم التابع له: الفيزياء

اسم الكلية : التربية

الجامعة : عين شمس

سنة التخرج: 2000

سنة المنح : 2006

رسالة ماجستير

اسم الطالب : عصام محمد نصر الدين عبد الحق

عنوان الرسالة: تأثير الأضافة على سبيكة قصدير يوتيكتية خالية من الرصاص

لتحسين استقرار بنيتها المجهرية

الدرجة العلمية: ماجستير إعداد المعلم في العلوم (فيزياء).

<u>المشرفون</u>

د. / عادل فوزى ابراهيم.
 أستاذ الفيزياء المساعد - كلية التربية - جامعة عين شمس

د. / نهاد داود حبيب.
 مدرس الفيزياء - كلية التربية - جامعة عين شمس

د. / میلاد صبحی مجلع.مدرس الفیزیاء - کلیة التربیة - جامعة عین شمس

الدراسات العليا

ختم الإجازة:

موافقة مجلس الكلية / /2006

أجيزت الرسالة بتاريخ / / 2006 موافقة مجلس الجامعة / / 2006

Ain Shams University Faculty of Education Department of Physics

Thesis Title

Alloying Effects in Near-Eutectic Sn-Lead Free Solder for Improving Microstructural Stability

Researcher Name

Essam Mohamed Naser Eldein

Supervised by

Dr. Adel Fawzy Ibrahim.

Dr. Nehad Daoud Habib.

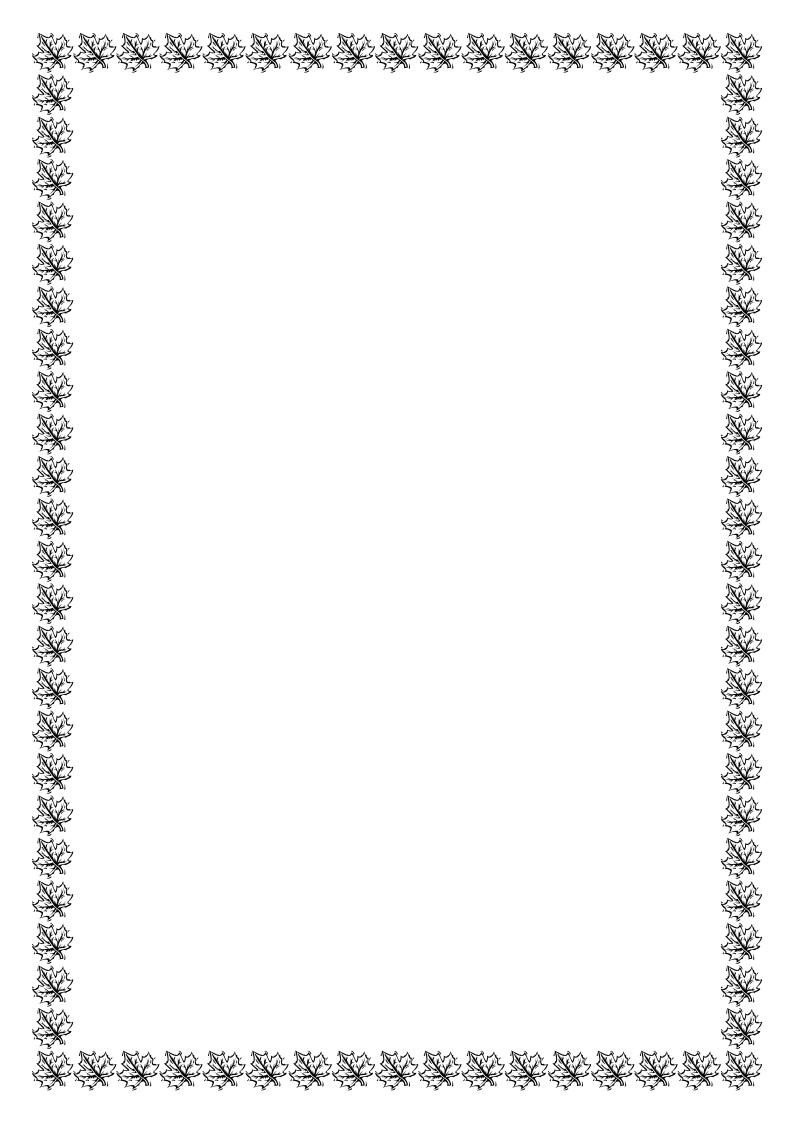
Dr. Milad Sobhy Megalaa.

شکر و تقدیر

أشكر السادة الأساتذة الذين قاموا بالإشراف على هذه الرسالة و هم:

1) د. / عادل فوزى ابراهيم. أستاذ الفيزياء المساعد - كلية التربية - جامعة عين شمس.

> 2) د. / نهاد داود حبيب. مدرس الفيزياء - كلية التربية - جامعة عين شمس.


> 3) د. / میلاد صبحی مجلع. مدرس الفیزیاء - کلیة التربیة - جامعة عین شمس.

و كذلك أشكر:

1- رئيس قسم الفيزياء:-أ.د./ عاطف سليمان رزق.

2- أ.د. / جمال سعد عوض الله. أستاذ الفيزياء المتفرغ - كلية التربية - جامعة عين شمس.

وجميع العاملين بالقسم - كلية التربية - جامعة عين شمس.

ACKNOWLEDGEMENT

The author is greatly indebted to professor **Dr. Atef Soliman Rizk**, Head of Physics Department, Faculty of Education, Ain Shams University for his continuous support.

I would like to express my deep gratitude to professor **Dr. Gamal Saad Awadalla**, for his continual support, moral encouragement, relentless efforts to make this work come to life.

Sincere appreciation to **Dr. A. Fawzy**, Faculty of Education, Ain Shams University for suggesting this work and continual support.

Thanks are also extended to, **Dr. N. D. Habib** and **Dr. M. S. Megalaa**, Faculty of Education, Ain Shams University for their kind help and valuable discussions throughout the progress of this work.

This work has been performed in the laboratory of "Solid State Physics", Faculty of Education, Ain Shams University, and I would like to express deep thanks to my colleagues at the laboratory for the experimental facilities they have provided.

\bigcirc

Approval Sheet

Title : Alloying Effects in Near-Eutectic Sn-Lead Free Solder for

Improving Microstructural Stability

Candidate: Essam Mohamed Nasr El den Abd El hak

Degree : Master for Teacher's Preparation in Science

(Physics).

Board of Advisors

Approved by

Signature

1. Dr. Adel Fawzy Ibrahim.

Physics Department,

Faculty of Education, Ain Shams University

2. Dr. Nehad Daoud Habib.

Physics Department,

Faculty of Education, Ain Shams University

3. Dr. Milad Sobhy Megalaa.

Physics Department,

Faculty of Education, Ain Shams University

Date of presentation / / 2006

Post graduate studies:

Stamp: // Date of approval: //

Approval of faculty council: / /2006

Approval of University Council: / / 2006

ABSTRACT

The present work is devoted to investigate:-

- 1) The effect of grain diameter on creep behaviour of Sn 3.5wt% Ag and Sn-3.5wt% Ag -1 wt% Zn wire specimens tested at different testing temperatures, T_t , of 303, 323, 348 and 398K under different stresses , σ , ranged from 7.1 to 12.4 MPa .
- 2) The effect of both ageing temperatures (353, 373, 393 and 413K and ageing times (1,20 and 50h) on creep behaviour of Sn 3.5wt% Ag and Sn-3.5wt% Ag -1 wt% Zn wire specimens having a constant grain diameter of 125 μ m $\pm 2\%$ and crept at room temperature (300K) under different stresses , σ , ranged from 8.8 to 14.2 MPa .
- 3) The structural changes accompanying both grain growth and ageing processes through optical and electron microscope investigations in both solder alloys.

CONTENTS

	Page
Acknowledgement	
List of Figure Captions	I
List of Equations	VIII
Abstract	IX
Summary	X
<u>CHAPTER I</u>	
INTRODUCTION	
(1.1) Lattice Defects in Crystalline Solids	1
(1.2) Work Hardening of Metals and Alloys	2
(1.3) Creep Characteristics	3
(1.4) Mechanisms Contributing to Creep Deformation	6
(1.5) Analytical Representation of Creep Curve	9
(1.5.1) Time Laws	9
(1.5.1.1) Logarithmic Creep	10
(1.5.1.2) Parabolic and Secondary Creep	10
(1.5.1.3) Exponential and Secondary Creep	11
(1.5.1.4) Steady- State Creep	11
(1.5.2) Stress Laws	11
(1.5.3) Temperature Laws	12

CONTENTS

(1.6) Factors Affecting Creep	13
(1.6.1) Effect of Grain Size	13
(1.6.2) Effect of Alloying	15
(1.6.2.1) Solid Solution Alloys	16
(1.6.2.2) Precipitation and Dispersion Alloys	17
(1.6.3) Effect of Pre-strain	17
(1.6.4) Effect of Recovery	18
(1.6.5) Effect of Environment	18
(1.7) Steady-State Creep Theories	18
(1.7.1) Viscous Creep Theories	19
(1.7.2) Dislocation Creep Theories for Alloys	20
(1.7.3) Mobile Dislocations and the Grain-Size Effect	21
(1.8) Dislocation Mechanisms Involved in the	
Annealing out of Plastic Deformation	21
(1.9) Precipitation in Binary Systems	24
(1.9.1) Diffusion in Solid Solutions	24
(1.9.2) Theory of Diffusion-Limited Precipitations	25
(1.10) The Eutectic Transformation	27
(1.11) Lead Free Solders	27
(1.12) Tin- Silver Phase Diagram	29
(1.13) Literature Review	29
(1.14) Aim of the Present Work	35

CHAPTER II

EXPERIMENTAL TECHNIQUES AND DEVICES

(2.1) Preparation of the Alloys	36
(2.2) Differential Scanning Calorimeter (DSC)	36
(2.3) Heat Treatment	38
(2.3.1) Heat Treatment Required for Obtaining	
Specimens of Different Grain Diameters	38
(2.3.2) Heat Treatment of the Aged Specimen	38
(2.4) Creep Apparatus and Measurements Technique	40
(2.4.1) Description of the Creep Testing Unit	40
(2.4.2) Specimen Mounting	40
(2.4.3) Creep Measurements Technique	42
(2.4.4) Elevated Temperature Creep	42
(2.5) Grain Diameter Measurements Technique	42
(2.6) Optical and Transmission Electron Microscope	
Examination	43
(2.7) X-ray Diffraction Measurements	47

CHAPTER III

EXPERMENTAL RESALTS

(3-1) Effect of Grain Diameter on the Steady State	
Creep of: (a) Sn - 3.5 wt % Ag and (b) Sn $- 3.5$ wt%	
Ag - 1 wt % Zn Alloys	48

CONTENTS

(3-2) Effect of Ageing Temperature and Ageing	
Time on the Steady State Creep of : (a) Sn	
- 3.5 wt % Ag and (b) Sn – 3.5 wt% Ag –	
1 wt % Zn Alloys	67
CHAPTER IV	
DISCUSSION	
(4.1) Possible Role of Alloy Addition and Grain Diameter	
on Creep Behavior of Near-Eutectic Sn-Ag	80
(4.2) Effect of Temperature and Time of Ageing	89
CHAPTER V	
CONCLUSION	
Conclusion	95
References	97
الملخص العربي	Í

List of Figure Captions

List of Figure Captions

	Page.
Fig. 1:- Schematic representation of a creep curve.	4
Fig. 2:- Creep treated as succession of events, each	
started by activation energy ΔQ .	14
Fig. 3:- Phase diagram for Sn-Ag alloys.	30
Fig. 4:- Typical DSC melting profile of the Sn-3.5wt%Ag	
and Sn-3.5wt% Ag-1wt% Zn solder alloys at	
a scanning rate 20Kmin ⁻¹ .	37
Fig. 5:- The temperature uniformity along the axis of	
the furnace.	39
Fig. 6:- Calibration of the furnace, surrounding the	
specimens.	39
Fig. 7:- Schematic diagram of creep apparatus.	41
Fig. 8:- Electropolishing circuit.	44
Fig. 9:- Electron microscope type of a Jeol-100s.	45
Fig. 10:- An automatic electrolytic thinning machine	
(Tenupole-3).	46
Fig. 11:- The grain diameter as a function of time at	
433k for: (a) Sn-3.5wt%Ag and (b)Sn-3.5	
wt%Ag-1wt%Zn alloy specimens.	49
Fig. 12:- Strain-time relations for Sn-3.5wt% Ag alloy	
specimens with different grain diameters crept at	
303K under the effect of different applied	
stresses as indicated.	50
Fig. 13:- Strain-time relations for Sn-3.5wt%Ag alloy	
specimens with different grain diameters crept at	