

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS AND COMMUNICATIONS ENGINEERING DEPARTMENT

Enhanced Channel Assignment Scheme for Cognitive Radio Network

A Thesis

Submitted in Partial Fulfillment of the Requirements
Of the Degree of Master of Science

Submitted By

Hanan Hussein Hussein Hafez

B.Sc. of Electrical Engineering

Electronics and Communication Engineering Department

Ain Shams University, 2008

Under the supervision of:

Prof. Salwa Hussein El Ramly Dr. Hussein Abd El-Aaty El-sayed

Faculty of Engineering Faculty of Engineering

Ain Shams University

Ain Shams University

Cairo - 2013

Curriculum Vitae

Name of the Hanan Hussein Hussein Hafez

Researcher:

Date of Birth: September, 17th, 1986

Nationality: Egyptian

Place of Birth: Kuwait

First University B.Sc in Electrical Engineering

Degree:

Department: Electronics & Communication

Engineering

University: Ain Shams University

Date of Degree: June 2008

Abstract

With the recent growth in the usage of wireless communication devices, it is being predicted that there will be a serious shortage of bandwidth in the near future. Considering the frequency bands already assigned for various applications (e.g. television transmission, cellular communication, etc.) it may appear that such a shortage could occur.

However, if we closely examine the usage of the frequency spectrum, a significant portion of the spectrum is under-utilized. For example, in several small cities many television channels in the VHF and UHF bands are unassigned.

Cognitive Radio Network (CRN) allows the Secondary Users (SUs) or the unlicensed users to share the licensed bands with the Primary Users (PUs) or the licensed users under some constraints such as limitation in the transmitted power.

CRNs need a Medium Access Control (MAC) protocol to control channel assignment process. Common Medium MAC protocols for a single channel do not provide, in general, mechanisms for channel switching and working with less performance in multiple channels environments. An enhanced Multi-channel MAC protocols is needed when having multiple independent channels to be used simultaneously.

Thus, several desired features are required for CR MAC protocol. First, it should be able to predict future spectrum usage based on statistics of local spectrum utilization up to the current time instance. To implement this feature, a CR device should monitor the spectrum usage continually to maintain an accurate view of spectrum utilization or depends on a statistical distribution for the current channel or have a database for certain band such as TV band. Second, it should avoid the harmful interference with licensed users. Third, it is preferred to have cooperation between the CR users to circumvent the collision between SUs.

This thesis discusses the problem of frequency band scarcity and clarifying the importance of cognitive radio to solve this issue. It shows cognitive radio's transmission techniques, characteristics and its applications. The thesis also introduces different types of MAC protocols for cognitive radio networks and compares between them; states the advantages and disadvantages of each one.

Also, a predictive model is suggested to estimate PU's behavior; in order to exploit the channel's vacancies to transmit SUs data. This predictive model is Exponential Smoothing Model (ESM). MATLAB program was written to approve the validation of this model to be used by SUs.

A new MAC protocol is proposed to be applied in CRNs. This protocol is called a Predictive MAC (P-MAC). It uses Exponential Smoothing Model to access the licensed channel in the absence of PU. In addition, an enhanced version from P-MAC is suggested called Enhanced Predictive MAC (EP-MAC). Ns-2 program was used with modified code to evaluate the performance of P-MAC and EP-MAC protocols, whose simulation results give better results compared with another MAC protocol.

Acknowledgment

All my thanks to Allah, for the successful completion of this work.

This dissertation would not have been possible to complete without the help of so many people. I hope I can give them the acknowledgment they deserve. I am not good at thanking people enough I guess.

My deepest gratitude is to my advisors, Prof. Dr. Salwa H. El-Ramly, and Dr. Hussein Abd El-Aaty El-sayed. I have been amazingly fortunate to have advisors who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. Their guidance and encouragement helped me shape and realize this work.

Many Thanks go to my colleagues and friends for their support and help during my thesis.

I would like to express my gratitude to my family; my parent, my brother and my little lovely girl Salma for their never ending support and encouragement and for supporting me not only during my research work but also during my whole life.

Last, but not least thanks are also due to my husband Mohamed, for his understanding, patience, encouragement, besides, his enthusiasm for my work, also for helping me overcoming any obstacles that might interfere in programming.

Table of Contents

1 Introduction	1
1.1 Introduction to Cognitive Radio Networks (CRN)	1
1.1.1 Transmission techniques for cognitive radio systems	
1.1.2 Cognitive radio networks functions	6
1.2 Challenges in cognitive radios and networks	10
1.3 Cognitive Radio Applications	11
1.4 Thesis Objectives	13
1.5 Thesis Organization	13
2 MAC Protocols and standards for Cognitive Radio Networks.	15
2.1 Introduction	15
2.2 Background	16
2.2.1 Secondary use of spectrum	
2.2.2 Hidden terminal problem in a single channel environment	16
2.2.3 Virtual carrier sensing using RTS/CTS exchange	17
2.2.4 Multi-channel hidden terminal problem	18
2.3 Comparison of multi channel MAC protocols	19
2.3.1 Dedicated Control Channel Approach	19
2.3.2 Common Hopping Approach	20
2.3.3 Split Phase Approach	21
2.4 "KNOWS: Kognitiv Networking Over White Spaces"	21
2.4.1 System Architecture and Design	22
2.4.2 KNOWS's Drawback	24
2.5 A bandwidth sharing approach to improve licensed spectrum utiliza	tion.24
2.5.1 System architecture and overview	25
2.5.2 AS-MAC Protocol operation	26
2.5.3 Implementation considerations	27
2.6 Synchronized MAC Protocol for Multi-hop Cognitive Radio Networ	ks
SYN-MAC	28
2.6.1 Introduction	
2.6.2 Issues in multi-hop cognitive networks	
2.6.3 Synchronized MAC (SYN-MAC) protocol	
261 Advantages	32

2.7 A Cognitive MAC Protocol Using Statistical Channel A	
Wireless Ad-hoc Networks	
2.8 An Energy Efficient Multichannel MAC Protocol for C Hoc Networks	O
2.8.1 Multichannel Hidden Terminal Problem	
2.8.2 System Model	
2.8.3 ECR-MAC Design	
Ç	
2.9 Standardizations for Cognitive Radio TV White Space	
2.9.1 Standard IEEE 802.22 WRAN for CR in TVWS	
2.9.3 ECMA 392 System	
·	
2.10 Comparisons between different MAC protocols (Medi	
for Cognitive Radio Ad Hoc Network	
2.11 Conclusion	45
3 A Predictive Model for predicting Primary User B	ahaviar Using
Exponential Smoothing Model (ESM)	_
3.1 Introduction	46
3.2 Opportunistic Periodic MAC (OP-MAC)	47
3.3 The proposed Exponential Smoothing Model (ESM)	48
3.3.1 Exponential Distribution	50
3.3.2 Normal Distribution	50
3.3.3 Erlang distribution	51
3.4 Performance evaluation	51
3.4.1 Occupancy ratio	52
3.4.2 Collision ratio	54
3.4.3 Number of collisions	55
3.4.4 The occupancy ratio enhancement	
3.4.5 Sensing overhead	57
3.5 Conclusion	58
4 Predictive MAC (P-MAC) Access Algorithm and in	
for Cognitive Radio Network	59
4.1 Introduction	59
4.2 The proposed P-MAC	60
4.2.1 P-MAC description	
4.2.2 Exponentially smoothed P-MAC	63
V	

4.3 Enhanced P-MAC	63
4.4 Performance evaluation	64
4.4.1 Throughput performance of single flow	
4.4.2 Throughput performance of multi flows	66
4.4.3 Prediction model validation	68
4.4.4 Collision ratio	70
4.5 Conclusion	71
5 Conclusions and suggested future research	73
5.1 Conclusions	73
5.2 Suggested future research	74
Publications Extracted from The Thesis	76
6 References	77
Appendix A	80
Simulation implementation	85
Simulation, results, and analysis	88

List of Figures Figure 1-1 Spectrum utilization	2
Figure 1-2 Spectrum hole concept	2
Figure 1- 3 Graphic representations of three types of cognitive behavior	4
Figure 1- 4 Comparison between interweave and underlay models	5
Figure 1-5 Intra-network and Inter-network Spectrum Sharing in CRN	9
Figure 1-6 Example traffic patterns of different channels (White spaces describe the instants without traffic)	
Figure 2-1 Hidden terminal problem in a single channel environment	. 17
Figure 2-2 Multichannel hidden terminal problem	. 18
Figure 2-3 Dedicated control channel approach	. 20
Figure 2-4 Common hopping approach	20
Figure 2-5 Split phase approach	. 21
Figure 2-6 System diagram	26
Figure 2-7 AS-MAC packet transfer	. 27
Figure 2-8 Six cognitive nodes with a set of free channels at each node	. 31
Figure 2-9 Five channels with the control and data transfer events in their respective time slots	
Figure 2-10 An illustrative example of the SCA-MAC protocol	33
Figure 2-11 Structure of ECR-MAC protocol	. 36
Figure 2-12 Process of channel negotiation and data exchange in ECR-MAC	37
Figure 3- 1 OP-MAC structure	. 48
Figure 3- 2The MAC periods which exploit the OFF state durations	. 49
Figure 3- 3 Occupancy ratio calculation as a function of smoothing factor α , ESM versus OP MAC	52

Figure 3- 4 Collision ratio calculation in case of scenario 1 as a function of smoothing factor α, ESM versus OP-MAC
Figure 3- 5 Number of collisions for normal, Erlang, Poisson distribution over 2000 MAC period versus OP-MAC
Figure 3- 6 The enhanced occupancy ratio for ESM and OP-MAC for Poisson channel distribution
Figure 3- 7 The collision ratio for the enhanced technique for ESM and OP-MAC for Poisson channel distribution
Figure 4- 1 The flow chart of Sensing and RTS/CTS exchange period
Figure 4- 2 EP-MAC structure
Figure 4- 3 Throughput evaluation for P-MAC, OP-MAC and EP-MAC
Figure 4- 4 Random access technique structure
Figure 4- 5 Not random access technique structure
Figure 4- 6 Normalized Throughput evaluation per number of flows for P-MAC, OP-MAC and EP-MAC.
Figure 4- 7 Normalized throughput evaluation versus α for P-MAC, OP-MAC and EP-MAC in case of single flow.
Figure 4- 8 Normalized throughput evaluation versus α for P-MAC, OP-MAC and EP-MAC in case of eight flows.

List of Tables Table 3- 1 comparison between types of CR-MAC
Table 3- 2 parameters used in the proposed analytical model
Table 3- 3 Sensing over head calculations in percentage over 2000 MAC periods at α = 0.05
Table 4- 1 parameters used in the proposed model
Table 4- 2 Normalized throughput for the CR network
Table 4- 3 Collision ratio calculation for OP-MAC, P-MAC and EP-MAC for mean ON time (5sec) and mean OFF time (5sec)
Table 4- 4 Collision ratio calculation for OP-MAC, P-MAC and EP-MAC for mean ON time (10 sec) and mean OFF time (10 sec)

List of Abbreviations

ACK ACKnowledgment

AN Ad hoc network Node

AP Access Point

AS-MAC Ad hoc Secondary system Medium Access Control

ASN Ad hoc Secondary Network

ATIM Ad hoc Traffic Indication Messages

BCCH Broadcast Control CHannel

BS Base Station

CA Collision Avoidance

CC Control Channel

CCCH Common Control CHannel

CCD Cell Channel Description

CDT Channel Detection Time

CI Cell Identity

CMAC Control Media Access Control

CPE Customer Premises Equipment

CR Cognitive Radio

CRAHN Cognitive Radio Ad Hoc Network

CRN Cognitive Radio Network

CRS Cognitive Radio System

CSMA/CA Carrier Sense Multiple Accesses/Collision Avoidance

CTS Clear To Send

CVS Contact Verification Signal

CW Contention Window

DC Data Channel

DCF Distributed Coordination Function

DIFS Data Inter Frame Space

DSA Dynamic spectrum access

DVB-T2 Digital Video Broadcasting – second generation Terrestrial

ECMA European Computer Manufacturers Association

ECR-MAC Energy Efficient Multichannel Medium Access Control

EMI Electro Magnetic Interference

EMC Electro Magnetic Compatibility

EP-MAC Enhanced Predicted – MAC

ESM Exponential Smoothing Model

FCC Federal Communications Commission

FCCH Frequency Correction CHannel

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

GSM Global System for Mobile communication

ISM Band Industrial, Scientific and Medical Band

KNOWS Kognitiv Networking Over White Spaces

LAI Location Area Identity

LAN Local Area Network

MAC Media Access Control

MCHTP Multi Channel Hidden Terminal Problem

MHCRN Multi-Hop Cognitive Radio Network

MMAC Multichannel Medium Access Control

MS Mobile Station

NAV Network Allocation Vector

NRA Not Random Access
ns2 Network Simulator 2

OFDM Orthogonal Frequency Division Multiplixing

OFDMA Orthogonal Frequency Division Multiple Access

OP-MAC Opportunistic Periodic - MAC

PHY Physical

P-MAC Predicted - MAC

PU Primary User

QAM Quadrature Amplitude Modulation

QOS Quality Of Service

QPSK Quadrature Phase Shift Key

RA Random Access

RAM Resource Allocation Matrix

RES REServation message

RF Radio FrequencyRTS Request To Send

RX Receiver

SCA-MAC Statistical Channel Allocation Medium Access Control

SCH Synchronization CHannel

SIFS Short Inter Frame Space

SM Spectrum Manager

SU Secondary User

SYN-MAC Synchronized Medium Access Control

TDD Time Division Duplex

TDMA Time Division Multiple Access

TRX Transceiver

TS Time Slot

TV Tele-Vision

TVWS TV White Space

TX Transmitter

UWB Ultra Wide Band

WLAN Wild Local Area Network

WRAN Wireless Regional Area Network