Prevalence and Mode of Inheritance of Stuttering in Primary School Children in Cairo

Thesis
Submitted for Partial Fulfillment of
M.D in Phoniatrics

By

Lamiaa Mohamed El Assal

Master Degree In Phoniatrics Ain Shams University

Under Supervision Of

Prof. Dr. / Mahmoud Youssef Abou El-Ella

Professor of Phoniatrics Faculty of Medicine – Ain Shams University

Prof. Dr. / Marwa Mahmoud Saleh

Professor of Phoniatrics
Faculty of Medicine – Ain Shams University

Prof. Dr. / Mohamed Abd El Adl Sawy

Professor of Genetics
Faculty of Medicine – Ain Shams University

Dr. / Ihab Chehad Habil

Lecturer of Community
Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University 2013

انتشار و الوسائل الوراثية لأنتقال التلعثم في المدارس الأبتدائية بالقاهرة

رسالة توطئة للحصول على درجة الدكتوراة في أمراض التخاطب مقدمة من

الطبيبة / لمياء محمد العسال

ماجستير أمراض التخاطب – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ محمود يوسف ابو العلا أستاذ أمراض التخاطب كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ مروة محمود صالح استاذ أمراض التخاطب كلية الطب - جامعة عين شمس

الأستاذ الدكتور/ محمد عبد العدل الصاوى أستاذ الأمراض الوراثية كلية الطب - جامعة عين شمس

الدكتور/ ايهاب شهاد هابيل مدرس طب المجتمع كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس

First of all, thanks to Allah, whose help is the main factor in accomplishing this work.

I would like to record my great obligation to *Prof. Dr. Mahmoud Youssef*, Professor of Phoniatrics - Ain Shams University, who gave me the honour of supervising this work.

My deepest gratitude and Thanks to *Prof. Dr. Marwa Saleh*, Professor of Phoniatrics - Ain Shams University , who was great support for me in this work. I owe her a lot for her meticulous supervision on every part of this work.

I would like to thank *Prof. Dr. Mohamed Abd el Adl Sawy*, Professor of Genetics – Ain Shams University for supervising this work and for his guidance and help

I am faithfully grateful to *Dr. Ihab Chehad*, Lecturer of Community- Ain Shams University for his time, effort and support along the course of this work.

I would like to express my thanks to *Dr. Sahr Masalhy*, who was my helping supervisor giving me her experience to accomplish this work.

Also, I would like to present my sincere thanks to all staff members of Phoniatrics Uint, Faculty of Medicine, Ain Shams University and to my colleagues in Phoniatrics Uint, at Ain Shams University.

Last but not least, I would like to thank all patients participating in this study for their sincere kind cooperation.

Lamiaa Mohamed El Assal

List of Contents

Title	Page
♦ Introduction	1
♦ Aim of the Work	4
• Review of the Literature	5
♦ Subjects and Methods	71
• Results	77
♦ Discussion	103
♦ Conclusion and Recommendations	120
• Summary	122
♦ References	124
♦ Appendix	141
♦ Arabic Summary	

List of Tables

Table No.	Title		
1	Difference between Stuttering and developmental dysfluency.	7	
2	Characteristics of the study sample.	77	
3	Study sample according to schools selection.	78	
4	Relation of stuttering to gender.	79	
5	Relation of stuttering to age.	79	
6	Relation of stuttering to RT/LT handedness.	80	
7	The relation of the consanguinity and positive family history to stuttering.	80	
8	Twin study and stuttering.	81	
9	Onset of stuttering.	81	
10	Relation of cluttering and anxiety to stuttering.	82	
11	Stuttering related to a certain speech situation, and presence of specific sound difficulties.	82	
12	Stuttering during automatic speech, presence of involuntary movements associated with stuttering, presence of interjections used during speaking and monotone speech.	82	
13	Spontaneous recovery from stuttering.	83	
14	Relation of other potentially hereditary diseases.	83	
15	Illustrates the findings, after studying Pedigrees with positive family history	102	

List of Figures

Fig.	Title	
1	Symbols used in human pedigree analysis.	54
2	Autosomal dominant figure.	56
3	Autosomal recessive figure.	57
4	X-linked recessive, carrier mother.	59
5	X-linked recessive, affected father.	60
6	X-linked dominant, affected mother.	62
7	X-linked dominant, affected father.	63
8	Mitochondrial inheritance.	65
9	Translocation figure.	70
10	Prevalence of stutterers.	78

List of Pedigrees

Pedigrees showing Autosomal Dominant Inheritance.	84
Pedigrees showing Autosomal Recessive Inheritance.	92
Pedigrees showing Mutations.	96
Pedigree construction of the Pakistan family showing autosomal recessive.	115

List of Abbreviations

ADHD: Attention Deficit Hyperactivity Disorder

ASHA: American-Speech-Language-Hearing-

Association

DAT1 : Dopamine transporter

DNA : Deoxyribonucleic acid

DRD2 : Dopamine D2 receptor

DSM: Diagnostic and Statistical Manual of Mental

Disorders

DβH : Dopamine β -hydroxylase

GNPT: Gluco Nacteyl-phosphotransferase

NAGPA: N-acetylglucosaminidase-1-phosphodiester

alpha-N-acetylglucosaminidase

PDS : Persistent development stuttering

PKST72: The largest Pakistan family

TS : Tourette syndrome

WHO: World Health Organization

Introduction

Stuttering appears in all cultures and has been a problem for human kind for at least 40 centuries. It has been a controversial topic for decades concerning its definitions, etiology, different methods of assessment and its treatment. Stuttering is a disorder of the neuromotor control of speech, influenced by interactive process of language production, and intensified by learning process (**Peters and Guitar, 1991**).

American – Speech – Language -Hearing-Association (ASHA, 1999) defined fluency disorders as a deviation in the continuity, smoothness, rhythm, and/or effort with which phonologic, lexical, morphologic, and/ or syntactic language units are spoken.

Stuttering affects 4-5% of the people worldwide. It usually begins in children at three to six years of age, and as many as three-quarters of affected children eventually recover without any intervention. Ultimately, stuttering is persistent for only 0.5-1% of the population (**Rathi et al., 2006**). Stuttering is more prevalent in children because of the high incidence of the developmental dysfluency in this population. Developmental dysfluency is more common to occur by the time a child enters the school (**Cooper, 1987**).

Aboul Oyoun (2000) reported that prevalence of stuttering was 0.29: 0.55% in both urban and rural areas in the Upper Egypt in a two year study of 1818 people.

Craig et al. (2003) stated that stuttering exhibits a strong gender difference in incidence. Yairi et al. (1996) found that stuttering beyond childhood is characterized by a significant bias towards males, with males out-numbering females by a ratio 3:1 while Rathi et al. (2006) found that males out-numbering females by a ratio 5:1.

Concerning family history and its role in stuttering, **Andrews and Harris (1964)** found that 30% of the stutterers had relatives who stutter. Children who have first-degree relatives who stutter are three times as likely to develop a stutter **Ward (2006)**.

There are several theories which tried to explain the etiology of stuttering, yet none of these theories was satisfactory to explain the exact etiology. These theories are Organic theories which explained stuttering as disturbance of physiology and neurophysiology (Travis, 1931 and Ingham et al, 2003), Neurotic theories which viewed stuttering as a result of anxiety, conflict and frustration (Coriat, 1931 and Millar and Watson, 1992), and Learning theories which viewed stuttering as avoidance response to different surroundings (Shams and Sherick, 1967).

Introduction

Stuttering presents in the form of: overt stuttering and covert stuttering. Overt stuttering is characterized by core behavior such as syllable repetition, intraphonemic disruption, and prolongation. Covert stuttering is characterized by word substitution and interjection which help the patient to postpone, avoid, hide and decrease the impact of stuttering (Starkweather, 1987).

Aim of the Work

The aim of this work is to investigate stuttering prevalence among the primary students and to establish informative baseline data about the size and distribution of stuttering from a population- based survey in Cairo using questionnaires in order to provide a proper stratum for further research. Pedigrees would be done to suggest the mode of inheritance in order to know much about its etiology to provide proper services for these patients.

Normal Speech and Stuttering

Speech is not a simple movement; it is the result of large number of complex processes on various levels. In stuttering, difficulties of execution of the final product are what we hear (Postma and Kolk, 1990).

Levels of processing are: level of conceptualization, level of formulation and level of articulation. Level of conceptualization is where the concepts one likes to express are specified and transformed into a preverbal message; then follows the level of formation, during which preverbal message is transformed into verbal or linguistic form. This level includes process of grammatical encoding. Finally, level of articulation or speech production complies preparation of muscle command and motor command execution leading to speech (Postma and Kolk, 1990).

Fluency is the production of more or less continuous speech at a relatively rapid rate with optimum effort. The fluent speech has four components: continuity, rate, rhythm and effort (Ambrose and Yairi, 1999). Speech of normal subject is perceived as continuous and fluent because pauses are linguistically appropriate junctures, serving an important communicative function (Starkweather, 1987).

The rate of normal speech may reach 200 syllables/minute. Rhythm of speech is the sense of the flow of speech one gets from the stresses, duration and timing of syllables. Fluent speech is effortless as there is no apparent muscular tension in the body or the voice (Nicolosi et al., 1996).

Normal speech is not totally fluent; it has normal dysfluencies and hesitations (Peters and Guitar, 1991). These normal dysfluencies are characterized by repetitions of whole/part words and phrases, which the listener ignores as long as they do not affect intelligibility of speech (Yairi and Lewis, 1984).

Fluency disorders are defined by **ASHA** (1999) as a deviation in continuity, smoothness, rhythm and/ or effort with which phonologic, lexical, morphologic and/ or syntactic language are spoken. Dysfluencies in childhood can be classified into developmental stuttering and cluttering. **Dalton and Hardcastle** (1977) defined cluttering as uncontrollable speech. **ASHA** (1999) defined cluttering as a fluency disorder characterized by rapid and/ or irregular speaking rate, together with excessive dysfluencies. There are other symptoms as language or phonological errors and often attention deficit.

Differentiating between normal developmental dysfluency and stuttering is important (<u>Table 1</u>). In general, developmental dysfluency involves the repetition of whole