رؤية للطرق المختلفة لعلاج التهابات القدم السكرى

رسالــة

مقدمة من

الطبيب/ حسن المتولي محمد توطئة للحصول على درجة الماجستير في الجراحة العامة

تحت إشراف

أ.د / أحمد محمود سعد الدين

أستاذ جراحة الأوعية الدموية والجراحة العامة

جامعة عين شمس

أ.د/ وجيه فوزي عبد الملك

أستاذ جراحة الأوعية الدموية والجراحة العامة

جامعة عين شمس

د/ عاطف عبدالحميد محمد

مدرس جراحة الأوعية الدموية والجراحة العامة

جامعة عين شمس

كلية الطب

جامعة عين شمس

7.17

الملخص العربي

يعد التهاب القدم السكرى من أكثر وأصعب المشاكل الجراحية وذلك برغم الجهود المضنية لتوعية المرضى وتوفير الرعاية الصحية المناسبة لهم. فمرض السكر من الأمراض المزمنة التى تؤثر بمرور الوقت على مختلف الأنسجة والأجهزة بالجسم نتيجة عدم الأستخدام الأمثل للطاقة وتعرض الجسم بإستمرار لارتفاع نسبة الجلوكوز فى الدم، تظهر الآثار الجانبية لمرض السكر تدريجياً ودون أن يشعر بها المريض. تعد القدم من أكثر الأماكن التى تتأثر سلباً بهذا المرض، فأكثر من 25% من هؤلاء المرضى سوف يعانون من مشاكل صحية مثل الآلتهابات والتقرحات بالقدم.

أن الألتهاب المزمن للأعصاب الطرفية الإرادية واللاارادية، ولعدم الإحساس بالأطراف تدريجياً مع القصور في الدورة الدموية الطرفية وتصلب الشرايين يعرض القدم لسهولة الألتهابات الشديدة والتي تؤدي في أحيان كثيرة إلى بتر الطرف.

إن تأثر الجهاز المناعى للجسم لدى مريض السكر له بالغ الأثر فى حدوث الألتهابات الشديده للطرف السفلى، فالخلايا الدفاعية لا تؤدى وظائفها على الوجه الأمثل، كما تتأثر الصفائح الدموية وتزداد المواد القابضة للأوعية الدموية الطرفية فى الدم مما يسهل حدوث وانتشار الألتهابات الشديدة وفشل العلاج الطبى والجراحى وبتر الأطراف.

هناك ثلاثة تغيرات مرضية تسبب التغيرات المرضية للقدم السكرى وهى: التهاب الأعصاب وقصور الدورة الدموية والعدوى. ولقد أظهرت الدراسات أن 40% من المرضى مصاحبون لألتهاب الأعصاب فقط و 25% مع قصور الدورة الدمويه و 35% يعانون من التهاب الأعصاب وقصور الدورة الدموية.

من أهم الوسائل العلاجية لهذه الأمراض المزمنة هي الطرق الدفاعية فأغلب الدراسات تشير

إلى نتائج طيبة نتيجة التوعية الصحية والأرشادية لهؤلاء المرضى وتقلص نسبه المشاكل الصحية المصاحبة لمرض السكر والبتر للأطراف السفلية.

وبالرغم من هذه المجهودات وسهولة حدوث الإصابة وضعف الجسم على المقاومة تحدث الألتهابات الشديدة في بعض الأحيان والتي يوجب معها التدخل الجراحي والطبي، فيجب أن يكون المريض تحت الرعاية الصحية داخل المستشفى مع استخدام المضادات الحيوية واسعة الطيف في البداية حتى الحصول على أنسب الأنواع مع نتيجة المزرعة من مكان الأصابة، يجب اكتشاف القصور الدموى في الأطراف وعلاجه إذا تطلب الأمر التدخل الجراحي وذلك للحصول على أفضل النتائج، كذلك التدخل الجراحي والغيار اليومي على الجراحي الموضعي التنظيف الجرح وإستئصال الأنسجه الميتة والغيار اليومي على الجرح.

وبالرغم من كل هذه الجهود فإن أكثر من 50% من حالات بتر الأطراف تكون لدى المصابون بمرض السكر وهذا أدى حديثاً إلى استخدام وسائل أخرى للعلاج لمساعده هؤلاء المرضى ومنها منشطات الخلايا المناعية التى أعطت نتائج طيبة في هذا المجال.

وفى هذه الدراسة سنحاول إلقاء الضوء على أستخدام الأساليب الحديثة لعلاج القدم السكرى ومحاولة تجنب البتر للطرف السفلى.

ENGLISH SUMMARY

The diabetic foot infection IS ONE of the most difficult surgical problems and despite strenuous efforts to educate patients and provide them with adequate health care. Diabetes one of the chronic diseases that have great affect on various tissues and organs in the body as a result of non-optimal use of energy and the body is exposed constantly to high glucose level in the blood, the side effects of diabetes gradually appear and without being felt by the patient. The foot is the most part of the body that adversely affected by the disease, and more than 25% of these patients will suffer from health problems such as infections and foot ulcers.

The chronic inflammation of the peripheral nerves voluntary and involuntary, with the loss of sensation gradually with ischemia in the peripheral circulation and atherosclerosis that will expose the foot to be easily infected which may lead to amputation.

The affected immune system in diabetic patient has a great impact on inflammation of the foot, defensive cells not functioning optimally, also affected platelets and vasoconstriction of peripheral blood vesseles which facilitates the occurrence and spread of inflammation and severe failure of

medical and surgical treatment and amputation of the affected foot.

There are three pathological changes that cause diabetic foot, namely: neuritis and ischemia and infection. Studies have shown that 40% of patients have neuritis only, and 25% with ischemia and 35% suffer from neuritis and ischemia.

Of the most important means for these chronic diseases are health care

Most studies indicate good results as a result of health education and
counseling for these patients and reduce the percentage of health
problems associated with diabetes and amputation of the lower limbs.

Despite these efforts and ease of incidence and poor body resistance severe inflammation occurs in some cases, which requires medical and surgical intervention, patient must be under care in the hospital starting immediately—with the use of a wide spectrum antibiotics till get the most appropriate species with the result of the culture from injury, we should discover ischemia in lower limbs and treated it even if surgical intervention is necessary to get the best results, as well as local surgical intervention to clean the wound and eradicate dead tissue and daily dressing on the wound.

In spite of all these efforts, more than 50% of amputations cases are the people living with diabetes and this has recently led to the use of other means of treatment to help these patients, including immune cells, which gave good results in this area.

In this study, we will try to shed light on the use of modern methods for the treatment of diabetic foot and try to avoid amputation of the lower limbs.

Different Modalities in Management of Diabetic Foot Infection

Essay

Submitted for Partial Fulfillment of M.S. degree
In General Surgery

By

Dr. Hassan Elmetwaly Mohamed

(*M.B.B. CH.*)

Under Supervision of

Prof. Dr. Ahmed Mahmoud Saad El-din

Professor of General & Vascular Surgery
Ain Shams University

Prof.Dr. Wagih Fawzy Abd-Elmalek

Professor of General & Vascular Surgery Ain Shams University

Dr. Atef Abd El-Hameed Mohamed

Lecturer of General & Vascular Surgery
Ain Shams University

Faculty of Medicine Ain Shams University 2013

List of Contents

	Page
-Introduction	1
-Aim of the Work	3
-Anatomy of the Foot	4
-EPIDEMIOLOGY AND PATHOPHYSIOLOGY OF DIABETIC	
FOOT DISEASE	34
-Diagnosis and Assessment	55
-Modalities of Treatment of Diabetic Foot	
Infections	89
-References	170
-English summary	
-Arabic summary	

List of Figures

Figure No.	Page
Figure (1): Bones of the foot	5
Figure (2): Metatarsals and phalanges	6
Figure (3): Ankle joint	7
Figure (4): Medial ligament	8
Figure (5):): Lateral ligament	8
Figure (6): Intertarsal joints	9
Figure (7): Talocalcaneonavicular joint	10
Figure (8): Tarsometatarsal, metatarsophalangeal, and	
interphalangeal joints	11
Figure (9): Tarsal tunnel and flexor retinaculum	12
Figure (10): Extensor retinacula	14
Figure (11): Fibular retinacula	15
Figure (12): Arches of the foot	17
Figure (13): Support for arches of the foot	17
Figure (14): Plantar aponeurosis	18
Figure (15): Fibrous digital sheaths	19
Figure (16): Extensor hoods	20
Figure (17): Extensor digitorum brevis muscle	21
Figure (18): First layer of muscles in the sole of the foot	22
Figure (19): Second layer of muscles in the sole of the foot	23
Figure (20): Third layer of muscles in the sole of the foot	24

Figure (21): Fourth layer of muscles in the sole of the foot	24
Figure (22): Arteries in the sole of the foot	26
Figure (23): Dorsalis pedis artery	28
Figure (24): Superficial veins of the foot	29
Figure (25): Lateral and medial plantar nerves	32
Figure (26):Terminal branches of superficial and	
deep fibular nerves in the foot	32
Figure (27): prevalence of diabetes	
Mellitus	35
Figure (28): risk factors for ulceration	41
Figure (29): Diabetic deformity due to motor neuropathry	42
Figure (30): Diabetes mellitus and footpathologies	46
Figure (31): The risk factors for	
amputation	52
Figure (32): Osteomyelitis of navicular bone on x-ray	59
Figure (33): Metatarsal osteonecrosis on C T	60
Figure (34): The use of tuning fork in neurological	
assessment	69
Figure (35): The biothesiometer and determination of vibration	
perception threshold	69
Figure (36): Sites of testing for 10-g monofilament	70
Figure (37): Intrinsic muscular atrophy and foot deformity	72
Figure (38): typical diabetic foot ulcer	76
Figure (39): The most common pathogens in diabetic foot infection	79

Figure (40): Toe pressure measurements	81
Figure (41): Neuropad adhesive pad with color indicator	92
Figure (42): Neuropad adhesive pad with color indicator	92
Figure (43): Multidisciplinary Team	94
Figure (44): neuropathic ulcer after sharp debridement	93
Figure (45): Osteomyelitis and joint	
infection	110
Figure (46): Total contact cast	115
Figure (47): open - toe Total contact cast	117
Figure (48): Removable cast walkers	118
Figure (49): Removable cast walkers	118
Figure (50): Instant Total Contact Cast	119
Figure (51): Forefoot and Hindfoot	
Half shoes	120
Figure (52): Forefoot and Hindfoot	
Half shoes	120
Figure (53): Therapeutic shoes with Rocker-bottom sole	121
Figure (54): Platelet-rich plasma	125
Figure (55): The use of vacuum assisted closure	133
Figure (56): Treatment algorithm for critical limb ischemia patients	138
Figure (57): The primary treatment administered to patients with	
chronic critical limb ischemia	139
Figure(58): PTA revascularization technique	140
Figure (59): Osteomyelitis of the first MTPJ	148

Figure (60): Motor neuropathy with wasting of the intrinsic muscul	148
Figure (61): Lesser Metatarsal Head Resection with Ulcer Excision	150
Figure (62): Muscle flap in plantar ulcer	152
Figure (63): V-Y Plantar Flap	156
Figure (64): Medial Plantar Artery Flap	159
Figure (65): The abductor digiti-minimi muscle flap	160
Figure (66): Sural Artery Neurocutaneous Flap	162
Figure (67): Bilateral transmetatarsal amputation	165
Figure (86): Midfoot Amputations	166

List of Tables

Table No.	Page
Table (1): Classification of diabetes mellitus	30
Table (2): Medical history	50
Table(3):Sensitivity and Specificity of Various Imaging modalities	57
Table (4): lower extremity examination	61
Table (5): IWGDF	72
Table (6): Megitt-Wagner Classification	73
Table (7): The university of texas classification	77
Table (8): PEDIS System	83
Table (9): wound dressing materials	98
Table (10): topical agents	99
Table (11): Classifying diabetic foot infections	100
Table (12): Foot Infections	102
Table (13): Empiric Therapy of Foot Infections	104

LIST OF ABBREVIATIONS

ABI	ankle/brachial index
AFO	Ankle Foot Orthoses.
Ang-1	Angiopoetin-1.
BASIL	Bypass versus Angioplasty in Severe Ischemia of the Leg.
BMSCs	bone marrow stem cells
1CPT	Carboxyterminal telopeptide of type 1 collagen
CROW	Charcot Restraint Orthotic Walkers.
CLI	Critical limb ischaemia
C.T	Computerized Tomography.
DCCT	Diabetes Control and Complications Trial.
DFUs	Diabetic foot ulcers.
ECM	Extracellular matrix.
EGF	Epidermal growth factor.
EGFR	Epidermal growth factor Receptor.
eNOS	Endothelial Nitric Oxide Synthase.
EPCs	Endothelial Progenitor Cells.
FDA	Food and Drug Administration.
FGF	Fibroblast Growth Factor.
НВО	Hyperbaric Oxygen Therapy.
GCSF	Granulocyte-Colony Stimulating Factor
HSE	Human skin equivalent.
IDDM	Insulin Dependent Diabetes Mellitus
IDSA	The Infectious Disease Society Of America.
IL	interleukin
ITCC	Instant Total Contact Cast
IWGDF	International Working Group on the Diabetic Foot
LEA	Lower Extremity Amputations.
LJM	Limited Joint Mobility.

LOPS	Loss Of Protective Sensation.
MDT	Maggot Debridement Therapy
MMPs	Matrix Metallo Proteinases.
MTPJ	Metatarso–Phalangeal Joint
MRA	Magnetic Resonance Angiography.
MRSA	methicillin-resistant S aureus
MRI	Magnetic Resonance Imaging.
MSC	Multipotent Stem Cells.
NADPH	
	Non Insulin Department Dickston Mellitus
NIDDM	Non–Insulin Dependent Diabetes Mellitus
NO	Nitric Oxide.
EPCs	Endothelial progenitor cells
NPWT	Negative pressure wound therapy
P1CP	Procollagen Carboxyterminal Propeptide.
PAD	Peripheral Arterial Disease.
PDGF-BB	Platelet Derived Growth Factor BB.
PECAM-1/CD31	Platelet Endothelial Cell-Adhesion Molecule-1.
PEDIS	P (perfusion), E (extent/size), D (depth of tissue loss), I (infection) and S (sensation).
PET	Positive Emission Tomography.
PTA	Balloon angioplasty
РТВ	Patellar Tendon–Bearing Brace.
PTIs	Pressure–Time Integrals.
PBUH	Peace Be Upon Him
PVR	Pulse Volume Recordings.
RCT	Randomized Controlled Trial.
RCWs	Removable Cast Walkers
SC	Stem Cells.
SDF-1a	Stromal Cell–Derived Factor–1α.
SPP	Skin Perfusion Pressure.
TASC	TransAtlantic Inter Society Consensus
Tc-99 HMPAO	Technetium-99hexamethylpropylene-amineoxime.