نتائج زراعة كبد من متبرع حي لسرطان الكبد

رسالة

توطئة للحصول علي درجة الدكتوراه في الجراحة العامة مقدمة من

الطبيب / أحمد نبيل كمال الحوفى ماجستير الجراحة العامة

تحت إشراف

الأستاذ الدكتور/ علاء الدين عبد الله فراج

أستاذ الجراحة العامة

كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ رفعت رفعت كامل

أستاذ الجراحة العامة

كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ آسر مصطفى محمد

أستاذ الجراحة العامة

كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ عمرو أحمد عبد العال

أستاذ الجراحة العامة

كلية الطب-جامعة عين شمس

الدكتور/ محمود زكريا الجنزورى

مدرس الجراحة العامة

كلية الطب-جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٣

OUTCOME OF LIVING DONOR LIVER TRANSPLANTATION FOR HEPATOCELLULAR CARCINOMA

Thesis Submitted for partial fulfillment of the MD degree in General Surgery

By **Ahmed Nabil Kamal El-hoofy**

M.B., B. Ch., M. SC. General surgery

Supervised By

Prof. Dr. Alaa El-Deen Abd-Allah Farag

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Refaat Refaat Kamel

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Aaser Mostafa Mohammed

Professor of general surgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Amr Ahmed Abdel Aal

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Dr. Mahmoud Zakaria El-Ganzoury

Lecturer of General Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgments

First and foremost, my deep and sincere thanks to my **Allah** who gave me strength and guided me throughout every step in my life till this moment.

Words do fail to express my deepest gratitude and appreciation to **Prof. Dr. Alaa El-Deen Abd-Allah Farag,** Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his excellent guidance and powerful support.

I am also grateful to **Prof. Dr. Refaat Refaat Kamel,** Professor of General Surgery, Faculty of medicine, Ain Shams University, for his valuable advice and great support.

My deepest thanks and appreciation go to **Prof. Dr. Aaser Mostafa Mohammed and Prof. Dr. Amr Ahmed Abdel-Aal,** Professors of General Surgery, Faculty of Medicine, Ain Shams University, for their guidance and advices throughout this work.

My deepest thanks and gratitude go to **Dr. Mahmoud Zakaria El-Ganzoury**, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University, for his most valuable advices, instructions and support all through the whole work and dedicating much of his precious time to accomplish this work.

I would also like to truly thank each and every person who gave me a hand in accomplishing this work.

List of Contents

	Page
List of Tables	I
List of Figures	III
List of Abbreviations	V
Introduction	1-3
Aim of the work	4
Chapter I: Surgical Anatomy of the Liver	5-25
Chapter II: Epidemiology of HCC	26-27
Chapter III: Diagnosis of HCC	28-37
Chapter IV: LT; History, Types & Technique	38-58
Chapter V: Liver Transplantation for HCC	59-72
Chapter VI: HCC recurrence after LT	73-85
Patients and Methods	86-92
Results	93-113
Discussion	114-142
Summary	143-144
References	145-169
Arabic summary	

List of Tables

No	Table	page
1	CLIP staging system	34
2	Child-Pugh classification Child-Pugh classification is calculated by summing the points per parameter to arrive at a total between 5 and 15.	36
3	shows history of liver transplantation.	39
4	Table shows a Comparative analysis between within and beyond Milan groups of patients	96
5	Table showing the recurrence group of patients	97-98
6	Table shows a Comparative analysis between Non- recurrence and Recurrence group among all patients	99
7	For assessment of survival among all variables:	101
8	For assessment of recurrence among all variable:	102
9	Stepwise logistic multi-regression analysis shows that both decreasing of age (<52Y) and AFP (<88) are the most sensitive discriminators for prediction for a patient with increased survival time (ST)	103
10	Stepwise logistic multi-regression analysis shows that both decreasing of age (<52Y) and AFP (<88) in addition to be within Milan criteria preoperatively are the most sensitive discriminators for prediction for a patient with increased ST	103
11	Shows impact of tumor grade on survival	107
12	Shows impact of tumor grade on incidence of recurrence	108
13	Shows impact of lobar distribution on incidence of recurrence	109
14	Shows improvement of survival of patients with the progression of our program which could be attributed to the improvement of surgical and imaging technique as well as good pre and postoperative assessment as we gain more and more experience regarding transplantation.	111
15	Shows impact of recurrence on survival	112
16	Shows overview of orthotopic liver transplantation for HCC.	117
17	Shows comparison of patient survival rate and recurrence free survival rate among different expanded Milan criteria in the literature.	118

List of Tables

No	Table	page
18	UCSF downstaging protocol for hepatocellular carcinoma	122
19	Outcome of LT for HCC according to Milan criteria, up-to-seven criteria and exceeding up-to-seven criteria in relation to microvascular invasion	128
20	D'Amico et al study (2009) correlating the pathological grade of the tumor to the survival and recurrence rates	132
21	Tumor grade among recurrence and non recurrence cases	132
22	Analysis of study correlating pre-LT level of AFP and recurrence rate	136

List of Figures

No	Figure	Page
1	Liver segments illustrated	6
2	CT showing relation of liver segments to portal bifurcation.	7
3	Distribution of vessels and ducts of liver	11
4	Hepatic artery anatomic variations.	14
5	Portal vein anatomy variations	15
6	Typical biliary tree (2-D view).	17
7	Relation of right lobe bile ducts to the portal vein	18
8	Anatomic variations of right lobe bile ducts-single series	19
9	Impact of right biliary anatomy on the number of donor ducts	21
10	Anatomic variations of left lobe bile ducts-single series	22
11	Diagnostic algorithm for the diagnosis of hepatocellular	32
	carcinoma depending on tumor size.	
12	BCLC staging and treatment schedule	35
13	Clamping of the hilar structures followed by division at the	51
	hilum	
14	Right lobe graft hilar anastomoses	52
15	Choledocho-jejunostomy bilio-enteric anastomosis in DDLT	58
16	The metro-ticket paradigm	63
17	Management of patients exceeding Milan criteria	68
18	Correlation between histological grade of the tumor and the	78
10	survival probability	0-
19	Algorithm for management of recurrent HCC after LT	85
20	Kaplan Meier Curve used to show the overall survival in months	104
21	Kaplan Meier curve shows survival among patients within and beyond Milan criteria	105
22	Kaplan Meier curve shows survival among patients within and	105
22	beyond Milan criteria	105
23	Kaplan Meier curve shows recurrence free survival among	106
	patients within and beyond Milan criteria (preoperatively)	
24	Kaplan Meier curve shows recurrence free survival among	106
	patients within and beyond Milan criteria (postoperatively).	
25	Shows impact of tumor grade on survival	107
26	Kaplan Meier curve shows impact of tumor grade on recurrence	108
27	Shows impact of lobar distribution on recurrence	109
28	Kaplan Meier curve shows impact of lobar distribution on recurrence free survival.	110

List of Figures

No	Figure	Page
29	shows improvement of survival of patients with the progression of our program which could be attributed to the improvement of surgical and imaging technique as well as good pre and postoperative assessment as we gain more and more experience regarding transplantation.	111
30	shows impact of recurrence on survival.	112
31	Kaplan Meier curve shows impact of recurrence on survival.	113
32	Log-relative risk of death in relation to (A) size of largest tumor and (B) Number of tumors	126
33	Two charts showing impact of histopathological grade of explanted HCC on survival	130
34	Correlation between grade-3 and microvascular invasion	131
35	Dropout rate on waiting list for LTx for HCC patients vs.	133
	Non-HCC patients	
36	Diagrams showing correlation between AFP levels pre-LT and cumulative survival and recurrence	135

List of Abbreviations

AFP	Alpha-fetoprotein
ALG	Anti lymphocyte globulin
BCLCG	Barcelona Clinic Liver Cancer Group
BCLC	Barcelona- Clinic-Liver-Cancer
CLIP	Cancer of the Liver Italian Program
CLD	Chronic liver disease
CBD	Common bile duct
CHD	Common hepatic duct
CT	Contrast-enhanced computed tomography
CEUS	Contrast-enhanced Ultra Sound
CsA	Cyclosporine
CMV	Cytomegalovirus
DDLT	Deceased donor liver transplantation
DCP	Des-gamma carboxy-prothrombin
DFP	Disease free period (DFP)
DFS	Disease-free survival
DD	Duct-to-duct
ELITA	European Liver and Intestine Transplant Association
GDA	Gastroduodenal artery
HR	Hazard ratios
HFL	Hepatic focal lesion
HR	Hepatic resection
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HCC	Hepatocellular carcinoma
HIF-1α	Hypoxia-inducible factor 1, alpha
ICG	Indocyanine green
IVC	Inferior vena cava
ILTS	International Liver Transplant Society
INR	International normalized ratio
IM	Intrahepatic metastasis
KFTs	Kidney function tests
LCA	Lectinlens culinarisagglutin
LGA	Left gastric artery
LHA	Left hepatic artery
LHD	Left hepatic duct
LHL	Left hepatic lobe
LFTs	Liver function tests
LR	Liver resection
LT	Liver transplantation
LDLT	Living donor liver transplantation
LN	Lymph node
MRI	Magnetic resonance imaging
IVIIVI	magnetic resonance imaging

List of Abbreviations

Introduction

epatocellular carcinoma (HCC) is the most common primary liver cancer and most patients with HCC also suffer from coexisting cirrhosis. For the treatment of patients without cirrhosis, resection should be considered whenever possible. Hepatic reserve is the one of the major determinants of liver resection. When compared with resection, transplantation restores liver function and has the advantage of removing tissue with an oncogenic potential (*Kassahun et al.*, 2006).

Liver resection (LR) and liver transplantation (LT) are considered the only two potentially curative treatments for this tumor. LT offers the best chance for cure in patients with HCC localized to the liver because both the tumor and the underlying cirrhosis are treated. In the 1980s and early 1990s, LT was often performed in patients with large or advanced, unresectable HCC. This resulted in high recurrence rates and unfavorable long-term survival (*Lee et al.*, 2010).

The field of liver transplantation has undergone remarkable advances in the last two decades. An essentially experimental procedure in the early 1980s, a liver transplant is now the treatment of choice for patients with acute and chronic liver failure. Patient survival at 1 year post transplant has increased from 30% in the early 1980s to more than 85% at present. The major reasons for this dramatic increase include refined surgical and preservation techniques, better immunosuppressive protocols, more effective treatment of infections, and improved care during the critical perioperative period. However, a liver transplant remains a major undertaking, with the potential for complications affecting every major organ system (*Busuttil et al., 2005*).

LT is the best therapeutic option for early, unresectable HCC, although it is limited by graft shortage and the need for appropriate patient selection. In the late 1980s, the results after LT for HCC were

1

disappointing, with high early recurrence and 5-year survival rates ranging between 18 and 40%. This discouraging experience and shortage of deceased donor grafts compelled the transplant community to establish stringent selection criteria to predict post transplant survival of HCC patients (*Mazzaferro et al.*, 2008).

In 1996, Mazzaferro et al. reported favorable long-term survival after LT in a series of patients with solitary tumor less than 5 cm in diameter or 2–3 tumor nodules with the largest nodule diameter below 3 cm. The investigators found that the long-term survival in these patients was comparable to that of non-HCC patients after transplantation. Since that time, these criteria, known as the Milan criteria, have become widely accepted as the selection criteria for LT in patients with HCC (*Lee et al.*, 2010).

The growing experience and success of LT for HCC have fueled controversies related to expansion of the Milan criteria for LT, since many studies have suggested that tumor stage beyond the Milan criteria does not necessarily predict worse survival after LT. Supported by studies showing that many patients with tumor stage beyond the Milan criteria can be cured by LT, a number of expanded criteria have been proposed. While expanding the criteria for LT allows more patients to be eligible for transplantation, arguments against expanding the criteria include the increased risk of vascular invasion and tumor recurrence at higher stages of HCC (Mazzaferro et al., 2008).

In 2001, Yao et al. from the University of California, San Francisco (UCSF), reported a 5-year survival of 75% in patients with a single tumor as large as 6.5 cm or a maximum of 3 tumors up to 4.5 cm and a cumulative tumor burden 8 cm. With mostly retrospective data, some groups have independently tested these criteria. These results have, however, been challenged because of the use of explant pathology, rather than preoperative imaging, as a determinant for the definition of the tumor stage (*Silva et al.*, 2008).

Various other groups have published expanded criteria with results not dissimilar to the original "Milan criteria". The same group in Milan has recently published retrospective data regarding outcome in 1112 patients exceeding the original Milan criteria. In this study, a 71.2% 5-year overall survival could be achieved using the "up-to-7" criteria (the "rule of 7," whereby the sum of the size of the largest nodule plus the total number of nodules cannot exceed 7). It is clear that the larger the tumor size and number, the worse the outcome (*Tanwar et al.*, 2009).

In the current era of increasing demand and unrelenting organ shortage, the foundation of the debate regarding expansion of the Milan criteria for HCC may ultimately rest on what the transplant community would consider an acceptable survival after Orthotopic liver transplantation (OLT) for HCC. Some groups have proposed a 50% 5-year patient survival to be the minimum acceptable cutoff. This mark may have been surpassed by the UCSF group, who has applied expanded criteria to benefit an additional 10% of patients with HCC with respect to post transplant survival and tumor recurrence (*Mazzaferro et al.*, 2008).

For strictly selective criteria, such as the Milan and UCSF criteria, the 5-year survival rate of patients who undergo transplantation for HCC is comparable to recipients who undergo transplantation for benign liver diseases. Nonetheless, LT is greatly limited by the shortage of liver grafts. The long waiting period leads to tumor progression and dropout of patients from the waiting list. Living donor liver transplantation (LDLT) is perceived as an alternative to deceased donor liver transplantation (DDLT) due to the limited availability of cardiac death donors. It may expand the donor pool, shorten the waiting time and prevent dropout of patients from the waiting list due to tumor progression. However, some investigators have suggested that the long-term and recurrence-free survival rates of LDLT are not satisfactory (*Li et al.*, *2010*).

Aim of the Work

This study aims at assessment of the outcome of living donor liver transplantation for patients with HCC within Milan's criteria and beyond Milan's criteria and the impact of presence of micro vascular invasion on long-term and recurrence-free survival rates.

Chapter (1)

Liver Anatomy

Liver Segments

ne of the greatest advances in hepatic surgery is the understanding of the segmental anatomy of the liver. The Couinaud system for liver segmental nomenclature is widely accepted in practice (*Couinaud*, 1999).

The liver is divided into longitudinal planes drawn through each hepatic vein to the vena cava, and a transverse plane at the level of the main portal bifurcation. The plane of the middle hepatic vein and the primary bifurcation of the portal vein (PV) divide the liver into a right and left lobe. This runs from the inferior vena cava (IVC) to the tip of the gallbladder fossa (also known as Cantlie's line or the portal fissure) (*Couinaud*, 1999) (*Strasberg*, 2005).

Each secondary portal bifurcation (right and left) gives rise to four sectors (or sections) each after branching (Figure 1). On the right side this produces the anterior and posterior sectors, which are split by the plane of the right hepatic vein. The tertiary branches on the right supply four segments, two in each sector. On the left, the secondary bifurcation is less symmetrical. The ascending branch of the left gives off recurrent branches to the medial sector of the left lobe. However, the left lateral sector is supplied by separate branches that supply the two segments (segments II and III). Segment I, the caudate lobe, receives blood supply from both the left and right portal pedicles; bile ducts from segment I also drain into the right and left hepatic ducts (*Couinaud*, 1999) (*Strasberg*, 2005).