TRANSOBTURATOR TENSION-FREE MID-URETHRAL SLING USING TYPE-I MACROPOROUS POLYPROPYLENE MESH VERSUS BURCH RETROPUBIC COLPOSUSPENSIONIN MANAGEMENT OF PRIMARY URODYNAMIC (TYPE-I) STRESS URINARY INCONTINENCE

THESISSUBMITTED AS PARTIAL FULFILLMENT OF MD DEGREE IN OBSTETRICS AND GYNECOLOGY

By

Mohammed Ahmed Adel Mohammed Faris

Assistant Lecturer of Obstetrics and Gynecology – Ain ShamsUniversity M.B.B.Ch – Ain Shams University – 2002 Master of Obstetrics and Gynecology – Ain Shams University – 2007

Under Supervision of

Prof. Khaled Kamal Ali

Professor of Obstetrics and Gynecology AinShamsUniversity

Prof. Ismaiel Khalil El-Lamie

Professor of Obstetrics and Gynecology AinShamsUniversity

Prof. Mohammed Abdel-Hameed Nasr El-Dien

Professor of Obstetrics and Gynecology AinShamsUniversity

Ain Shams University Cairo – Egypt 2013

بسر الله الرحيم "وَ مَا أُوتِيتُمْ مِنَ العِلْمِ إِلَّا هَلِيلًا"

حدق الله العظيم

Acknowledgements

Foremost, all thanks and gratitude refer to **the Merciful and Compassionate ALLAH**; for, without HIS support and care, no one can accomplish success.

I would like to express my gratitude to **Prof. Khalid Kamal Ali**, Professor of Obstetrics and Gynecology, Ain Shams University, for his wise and fatherly support, not only regarding this work, but also in my and others' whole career. He has been one of my appreciable and trustable professors since my first steps in residency. His support in the appraising and directing this work, as it currently appears, is invaluable.

My utmost respect and gratitude to **Prof. Ismaiel Khalil El-Lamie**, Professor of Obstetrics and Gynecology, Ain Shams University; one of the pioneers of pelvic floor reconstructive surgery and originator of the idea of this work. I was honored by his appreciable assistance in the initial surgical training for this work and relevant procedures.

No word can express my appreciation and gratitude to **Prof. Mohammed Abdel-Hameed Nasr El-Dien**, Professor of Obstetrics and Gynecology, Ain Shams University; theinspiring surgeonto any young gynecologist; for his invaluable persistent and consistent support. His artistic surgical behavior has taken my interest in urogynecology and pelvic floor surgery.

I would like to express my special thanks to **Dr. Ahmed Mohamed Ibrahim**, Assistant Professor of Obstetrics and Gynecology, Ain Shams University, who, despite not being one of the listed official supervisors, was a fundamental and substantial member of this work. His quiet and patient, yet highly skillfulbehavior in training and assistance, extremely and remarkably guided me a lot in performing surgical procedures of the current work.

Furthermore, I have to thank **allmembers of the Urogynecology Unit, Ain Shams University Maternity Hospital**, for their invaluable support and share in the current work.

Lastly, but not the least, I am indebted with any success in my lifetime to, after ALLAH, my wife, my parents, and siblings, who have always been standing by my side and supporting memorally and physically.

Mohammed Ahmed Adel Farís Caíro, Egypt January 2013 To Omar, Laila, Yasmine and my ever-beloved Khadija

Table of Contents

Acknowledgements and Dedication	Iii
Lists of Tables	vii
Lists of Figures	ix
Lists of Abbreviations	xiii
Introduction	1
Aim of the Work	7
Review of the Literature	10
 Functional Anatomy of Pelvic Floor and Lower Urinary Tract. Pathophysiology of Female Stress Urinary Incontinence. Evaluation of Women with Stress Urinary Incontinence. Use of Biologic and Synthetic Mesh in Urogynecology and Reconstructive Pelvic Surgery Surgical Management Options for Female Stress Urinary Incontinence 	12 38 51 82 95
Patients and Methods	127
Results	147
Discussion	211
Summary and Conclusion	245
References	251
Arabic Summary	1

List of Tables

- Table-1 Types and Characteristics of Synthetic Graft Materials	86
- Table-2 Types and Characteristics of Biologic Tissue Implants	89
- Table-3Outcomes of TVT Case Series by Duration of Follow-up	115
- Table-4 Characteristics of Included Women	151
- Table-5 Prevalence of Cystocele in Included Women	153
- Table-6 Preoperative Urodynamic Parameters in Included Women	154
- Table-7 Underlying Etiology of Stress Incontinence in Included Women	154
- Table-8 Preoperative Scores for ICIQ-UI-SF Questionnaire in Included Women	155
- Table-9 Difference between Groups regarding Initial Characteristics	156
- Table-10 Difference between Groups regarding Prevalence of Cystocele	157
- Table-11 Difference between Groups regarding Preoperative Urodynamic	159
Parameters	
- Table-12 Difference between Groups regarding the Underlying Etiology of Stress	161
Incontinence	
- Table-13 Difference between Groups regarding Preoperative Score for the ICIQ-	162
UI-SF Questionnaire	
- Table-14 Difference between Groups regarding Intraoperative Events	164
- Table-15 Summary of Features, Management and Prognosis of Cases with	166
Intraoperative Complications	
- Table-16 Difference between Approaches of Transobturator Sling Procedure	168
regarding Intraoperative Events	
- Table-17 Difference between Groups regarding Postoperative Pain	170
- Table-18 Difference between Approaches of Transobturator Sling Procedure	171
regarding Postoperative Pain	
- Table-19 Difference between Groups regarding Postoperative Adverse Events	173
- Table-20 Difference between Approaches of the Transobturator Sling Procedure	176
regarding Postoperative Adverse Events	
- Table-21 Difference between Groups regarding Postoperative Hospital Stay	179
- Table-22 Difference between Approaches of the Transobturator Sling Procedure	180
regarding Postoperative Hospital Stay	
- Table-23 Difference between Groups regarding Duration of Postoperative	181
Catheterization	
- Table-24 Difference between Approaches of the Transobturator Sling Procedure	182
regarding Duration of Postoperative Catheterization	
- Table-25 Difference between Groups regarding Objective and Subjective	182
Outcomes	
- Table-26 Difference between Groups regarding Patient Satisfaction through the	183
PGI-I Scale	
- Table-27 Difference between Approaches of the Transobturator Sling Procedure	186
regarding Objective and Subjective Outcomes	
- Table-28 Difference between Approaches of the Transobturator Sling Procedure	186
regarding Patient Satisfaction through the PGI-I Scale	
- Table-29 Difference between Women with Urethral Hypermobility and Those	190
with ISD regarding Objective and Subjective Outcomes among Those who	
underwent Transobturator Sling Procedure [Inside-Out Approach]	

- Table-30 Difference between Women with Urethral Hypermobility and Those	190
with ISD regarding Patient Satisfaction through the PGI-I Scale among Those	
who underwent Transobturator Sling Procedure [Inside-Out Approach]	
- Table-31 Difference between Women with Urethral Hypermobility and Those	192
with ISD regarding Objective and Subjective Outcomes among Those who	
underwent Transobturator Sling Procedure [Outside-In Approach]	
- Table-32 Difference between Women with Urethral Hypermobility and Those	192
with ISD regarding Patient Satisfaction through the PGI-I Scale among Those	
who underwent Transobturator Sling Procedure [Outside-In Approach]	
- Table-33 Difference between Women with Urethral Hypermobility and Those	194
with ISD regarding Objective and Subjective Outcomes among Those who	
underwent Burch Retropubic Colposuspension Procedure	
- Table-34 Difference between Women with Urethral Hypermobility and Those	194
with ISD regarding Patient Satisfaction through the PGI-I Scale among Those	
who underwent Burch Retropubic Colposuspension Procedure	
- Table-35 Difference between Groups regarding the ICIQ-UI-SF Score	196
- Table-36 Difference between Approaches of the Transobturator Sling Procedure	197
regarding the ICIQ-UI-SF Score	
- Table-37 Difference between Groups regarding Complications	200
- Table-38 Difference between Groups regarding Urodynamic Parameters	204
- Table-39 Summary of Features and Management of Cases complicated with	206
Vaginal Mesh Erosion	
- Table-40 Association between Patient's Characteristics and Objective Failure at	207
1 Year Postoperatively	
- Table-41 Association between Patient's Characteristics and Postoperative	176
Voiding Difficulty	
- Table-42 Association between Patient's Characteristics and Persistent <i>de novo</i>	209
Urgency at 1 Year Postoperatively	- · -
- Table-43 Association between Patient's Characteristics and Vaginal Mesh	210
Erosion	

List of Figures

- Figure-1 Coronal View of the Bony Pelvis in Female	13
- Figure-2 Sagittal View of the Bony Pelvis in Female	13
- Figure-3 Axial View of the Female Pelvic Floor	19
- Figure-4 Sagittal View of the Female Pelvic Floor	20
- Figure-5 Retropubic Space and Pelvic Fascia	21
- Figure-6 Blood and Nerve Supply of the Pelvis	23
- Figure-7 DeLancey's Levels of Pelvic Support	26
- Figure-8 Cross-section of the Female Urethra	30
- Figure-9 Anatomy of the Retropubic Space of Retzius	32
- Figure-10 Transobturator Anatomy	33
- Figure-11 Alteration in Bladder Neck Position Theory	40
- Figure-12 Intrinsic sphincter deficiency. The urethra is unable to generate	41
enough outlet resistance to retain urine in bladder	
- Figure-13 The Hammock Theory by DeLancey. The urethra lies on a supportive	42
layer composed of endopelvic fascia and anterior vaginal wall.	
- Figure-14 The Hammock Theory by DeLancey	43
- Figure-15 The Trampoline Theory	50
- Figure-16 Flow-Diagram of the Progress through the Phases of the Trial	150
- Figure-17 Bar-Chart showing Age Distribution in Included Women	152
- Figure-18 Pie-Chart showing Menstrual State in Included Women	152
- Figure-19 Pie-Chart showing Prevalence of Cystocele in Included Women	153
- Figure-20 Pie-Chart showing the Underlying Etiology of Stress Incontinence in	155
Included Women	
- Figure-21 Box-Plot Chart showing Difference between Groups regarding Age	157
- Figure-22 Box-Plot Chart showing Difference between Groups regarding BMI	157
- Figure-23 Box-Plot Chart showing Difference between Groups regarding	158
Prevalence of Cystocele	
- Figure-24 Box-Plot Chart showing Difference between Groups regarding	160
Preoperative VLPP	
- Figure-25 Box-Plot Chart showing Difference between Groups regarding	160
Preoperative Qmax	
- Figure-26 Bar-Chart showing Difference between Groups regarding the	161
Underlying Etiology of Stress Incontinence	
- Figure-27 Box-Plot Chart showing Difference between Groups regarding	162
Preoperative Score for the ICIQ-UI-SF Questionnaire	
- Figure-28 Box-Plot Chart Difference between Groups regarding Duration of the	165
Procedure	
- Figure-29 Box-Plot Chart Difference between Groups regarding the Procedure-	165
related EBL	
- Figure-30 Box-Plot Chart Difference between Approaches of the	169
Transobturator Sling Procedure regarding Duration of the Procedure	
- Figure-31 Box-Plot Chart Difference between Approaches of the	169
Transobturator Sling Procedure regarding the Procedure-related EBL	
- Figure-32 Box-Plot Chart Difference between Groups regarding Postoperative	171
Pain [after excluding Cases with Major Concomitant Procedures]	

- Figure-33 Box-Plot Chart Difference between Approaches of the	172
Transobturator Sling Procedure regarding Postoperative Pain [after excluding	
Cases with Major Concomitant Procedures]	
- Figure-34 Bar-Chart showing Difference between Groups regarding Overall	174
Postoperative Adverse Events	
- Figure-35 Bar-Chart showing Difference between Groups regarding	174
Postoperative Voiding Difficulty	
- Figure-36 Bar-Chart showing Difference between Groups regarding	175
Postoperative <i>de novo</i> Urgency	
- Figure-37 Bar-Chart showing Difference between Groups regarding	175
Postoperative Thigh Pain or Parethesia	
- Figure-38 Bar-Chart showing Difference between Approaches of the	177
Transobturator Sling Procedure regarding Overall Postoperative Adverse	
Events	
- Figure-39 Bar-Chart showing Difference between Approaches of the	177
Transobturator Sling Procedure regarding Postoperative Voiding Difficulty	
- Figure-40 Bar-Chart showing Difference between Approaches of the	178
Transobturator Sling Procedure regarding Postoperative de novo Urgency	
- Figure-41 Bar-Chart showing Difference between Approaches of the	178
Transobturator Sling Procedure regarding Postoperative Thigh Pain or	
Parethesia	
- Figure-42 Box-Plot Chart showing Difference between Groups regarding	180
Postoperative Hospital Stay	
- Figure-43 Curve showing Difference between Groups regarding Objective Cure	184
Rates at 1-month, 6-month and 1-years Postoperative Follow-ups	
- Figure-44 Curve showing Difference between Groups regarding Subjective	184
Cure Rates at 1-month, 6-month and 1-years Postoperative Follow-ups	
- Figure-45 Curve showing Difference between Groups regarding Patient	185
Satisfaction Rates through the PGI-I Scale at 1-month, 6-month and 1-years	
Postoperative Follow-ups	
- Figure-46 Curve showing Difference between Approaches of the	187
Transobturator Sling Procedure regarding Objective Cure Rates at 1-month, 6-	
month and 1-years Postoperative Follow-ups	
- Figure-47 Curve showing Difference between Approaches of the	187
Transobturator Sling Procedure regarding Subjective Cure Rates at 1-month, 6-	
month and 1-years Postoperative Follow-ups	
- Figure-48 Curve showing Difference between Approaches of the	190
Transobturator Sling Procedure regarding Patient Satisfaction Rates through	
the PGI-I Scale at 1-month, 6-month and 1-years Postoperative Follow-ups	
- Figure-49 Curve showing Difference between Groups regarding the Median	198
ICIQ-UI-SF Score Initially, as well as 1 month, 6 months and 1 year	
Postoperatively	
- Figure-50 Bar-Chart showing Difference between Groups regarding Rates of	201
Recurrent UTI 1 month, 6 month, and 1 year Postoperatively	
- Figure-51 Bar-Chart showing Difference between Groups regarding Rates of	201
Recurrent Vaginitis 1 month, 6 month, and 1 year Postoperatively	000
- Figure-52 Bar-Chart showing Difference between Groups regarding Rates of	202
Voiding Difficulty 1 month, 6 month, and 1 year Postoperatively	

- Figure-53 Bar-Chart showing Difference between Groups regarding Rates of <i>de</i>	202
novo Urgency 1 month, 6 month, and 1 year Postoperatively	
- Figure-54 Bar-Chart showing Difference between Groups regarding Rates	203
Upper Thigh Pain 1 month, 6 month, and 1 year Postoperatively	
- Figure-55 Difference between Groups regarding Initial and Postoperative	205
Maximum Flow Rate (Qmax)	
- Figure-56 Difference between Groups regarding Initial and Postoperative	205
Maximal Urethral Closure Pressure (MUCP)	

List of Abbreviations

95% CI 95% confidence interval **AFL** Autologous fascia lata

AHCPR Agency for Health Care Policy and Research

ALPP Abdominal leak point pressure

ARF Autologous rectus fascia

AUA American Urology Association

BMI Body mass index CFL Cadaveric fascia lata

CIC Clean intermittent catheterization

DA Dermal allograft
DI Detrusor instability
DO Detrusor overactivity
EBL Estimated blood loss
EMG Electromyography

FD-CFL Freeze-dried cadaveric fascia lata

FVC Frequency volume chart

ICIQ International Consultation on Incontinence Questionnaire ICIQ-UI-SF International Consultation on Incontinence Questionnaire

– Urinary Incontinence – short form

ICS International Continence Society

IQR Interquartile range

ISD Intrinsic sphincter deficiency

IUGA International Urogynecological Association

LPP Leak point pressure LUT Lower urinary tract

LUTD Lower urinary tract diseaseLUTS Lower urinary tract symptomsMCC Maximum cystometric capacity

MMK Marshall-Marchetti-Krantz Procedure

MMPs Matrix metalloproteinasesMRI Magnetic resonance imagingmRNA Messenger ribonucleic acid

MUCP Maximum urethral closure pressure

MUI Mixed urinary incontinence

NICE National Institute of Health and Clinical Excellence

NIH National Institute of Health NPV Negative predictive value

OAB Overactive bladder

Pdet @ QmaxDetrusor pressure at maximum flow ratePGI-IPatient Global Impression of ImprovementPOP-QPelvic organ prolapse quantification system

PPV Positive predictive value

PVR Post-void residual urine volume

Qave Average uroflow rate **Qmax** Maximal uroflow rate

RCOG Royal College of Obstetricians and Gynaecologists

RCT Randomized controlled trial

RR Relative risk

SD Standard deviation

SIS Small intestinal submucosa
SUI Stress urinary incontinence
TVT Tension-free vaginal tape

UDS Urodynamics study
UI Urinary incontinence
UTI Urinary tract infection
UUI Urge urinary incontinence
VAS Visual analogue scale

VLPP Valsalva leak point pressure

Introduction

Introduction

Stress urinary incontinence (SUI) is estimated to affect up to one-third of women older than the age of 18 years old, with a median age of 45 years (Hunskaar et al., 2004). Surgery for stress urinary incontinence (SUI) represents one of the most common indications for surgery in women. Approximately 4% of women will undergo surgery for SUI during their lifetime (Olsen et al., 1997).

Over 1,000 surgical procedures for treating SUI have been described. However, only a small number of these procedures have both withstood the test of time and held up scientific scrutiny (Barber, 2008).

In 1949, Marshal, Marchetti and Krantz described a retropubic procedure (MMK), in which the rectus fascia was divided to allow access to the supportive tissue at the bladder neck, which is then fixed to the periosteum of the pubic bone. In 1961, Burch described a similar operation, in which these supporting tissues were anchored laterally to Cooper's ligament instead of the pubic bone, obviating the risk of osteitis pubis, an uncommon but debilitating complication associated with the MMK procedure. These procedures involved suspending and stabilizing the bladder neck and proximal urethra in a high retropubic position, thereby preventing their descent during times of increased intra-abdominal pressure. These techniques were effective, with mean 3-7-year continence rate of 77% (Walters and Daneshgari, 2004).

More recently, suburethral pubovaginal sling operations have become popular amongst urologists and gynecologists. In 1942, Aldridge developed the first suburethral sling using rectus fascia. This avoided the need for a laparotomy, therefore decreasing morbidity, but a second incision was still required either abdominally (to harvest rectus fascia) or on the inner thigh (for fascia late) (Aldridge, 1942). Published studies show long-term cure rates to be similar to Burch procedure, with sustained continence in about 85% of patients. In an attempt to obviate the need for a second incision to harvest fascia, many have evaluated the efficacy of cadaveric fascia, xenografts and synthetic materials e.g. Mersilene, Gortex, silicone and polypropylene, as the sling material (Walter and Daneshgari, 2004; Bhargava and Chapple, 2004; Shindel and Klutke, 2005).

Modern surgical therapy of female SUI is no longer focused on the proximal urethra and bladder neck, but on providing additional support at the midurethra to restore continence. This has lead to introduction of mid-urethral sling procedures. Tension-free vaginal tape (TVT) is a standard minimally invasive procedure used to treat SUI since 1995 when it was first described by **Ulmsten et al (1995)**. The TVT procedure used a "bottom-up" retropubic route of sling passage, and was soon followed by suprapubic arch (SPARC) sling system, using similar methods via a "top-down" approach through the retropubic space toward the midurethra. TVT has shown to have similar effectiveness to colposuspension but with fewer complications (**Cody et al., 2003**). Although success ranges from 84 to 95%, complications described include bladder, bowel, and major blood vessel injuries, as well as postoperative voiding difficulties (**de Tayrac et al., 2004**) and de novo urgency and urge incontinence (**David-Montefoire et al., 2006**).

In 2001, Delorme described a method of inserting the tape, which passes through the obturator foramen (termed transobturator tape), thus theoretically avoiding some of the complications such as bladder perforation (Delorme, 2001). In this "outside-in" technique, after the initial anterior vaginal incision and dissection, the tape is introduced from the skin of the groin into the obturator foramen and comes out in the vaginal incision. In 2003, de Leval introduced a modified technique, which is the "inside-out" approach of the transobturator sling procedure, in which the needle is passed in a reverse route, i.e. in through vaginal incision and out through the obturator foramen.

In the preliminary study, Delorme showed that there was a high success rate, no bladder perforations and few perioperative complications via the transobturator route, and this procedure was subsequently widely-adopted before proper evaluation of its effectiveness and complications. There have been several non-comparative studies that have reported good short-term and medium-term (de Leval et al., 2005; Neuman, 2006; Latthe et al., 2008) success rates with transobturator sling procedures with either route.

Burch retropubic colposuspension (with its modifications) remains the widely-used and gold-standard surgical procedure for urodynamic stress incontinence in Ain Shams University Maternity Hospital, however. The major obstacle of adopting the modern midurethral sling procedures (whether retropubic or transobturator) as the gold-standard procedures is the high cost