Hepatitis B Surface Antigen Detection, Qualitative Versus Quantitative: A comparative study

Thesis

Submitted for the Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Noha Mohammed Ali

MB BCh.

Faculty of Medicine, Cairo University

Supervised by

Prof./ Aisha Yassin Abdel Ghaffar

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Prof./Yasser Ahmed Zeitoun

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Prof./ Afaf Abd El alim Mostafa

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

First and foremost, I feel always indebted to **Allah**, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to **Prof./ Aisha Yassin Abdel Ghaffar,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under her supervision.

I wish also to express my great gratitude and utmost appreciation to **Prof./Yasser Ahmed Zeitoun**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for his valuable suggestions and instructions during the progress of this work.

I feel deeply indebted to **Prof./ Afaf Abd El alim Mostafa**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her active cooperation, deep concern, enthusiastic encouragement, the effort and time he has devoted to the fulfillment of this work.

Noha Mohammed Ali

I would like to dedicate this thesis to allmembers in MyFamily, specially,

Mother and Father for supporting me and pushing me forward all the time.

Special dedication to myHusband for dealing tactfully and patiently during this work.

List of Contents

Subject	Page No.
ListofAbbreviations	i
ListofTables	v
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Hepatitis B Virus Infection	4
Quantitative Immunoassay	86
Subjects and Methods	109
Results	118
Discussion	126
Summary	133
Conclusion and Recommndation	136
References	137
Arabic Summary	

List of Abbreviations

Abbrev.	Full term
ADV	Adefovir
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
Anti-HBc	Antibody to hepatitis B core antigen
Anti-HBs	Antibody to hepatitis B surface antigen
anti-HBx	Anti hepatitis B x
APC	Antigen presenting cell
AST	Asprtate Transaminase
BCR	B cell receptor
BDL	Below detection limit
BL	Borderline
BSA	Bovin serum albumin
cccDNA	Covalently closed circular DNA
CD	Cluster of Differentiation
CDC	Centers of disease control and prevention
CEDIA	Cloned enzyme donor immunoassay
CHB	Chronic hepatitis b
CMIA	Chemilumescent microparticle immunoassay
CTL	Cytotoxic T lymphocyte
DC	Dendritic cell
DNA	Deoxyribonucleic acid
DR	Direct repeats
ECLIA	Electrochemiluminescence
EIA	Enzyme immunoassay
ELISA	Enzyme linked immunosorbent assay
EMIT	Enzyme multiplied immunoassay technique
ER	Endoplasmic reticulum
ETV	Entecavir

List of Abbreviations (Cont...)

FasL Fas Ligand

FIA Florescent immunoassay

FPIA Fluorescence polarization immunoassay

GGT Gamma-glutamyltransferase

GM-CSF Granulocyte-macrophage colony-stimulating factor

HAS The French National Authority for Health

HBcAg Hepatitis B core antigen
HBeAg Hepatitis B envelope antigen
HBIG Hepatitis B immunoglobulin
HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HBx Hepatitis B virus x proteinHCC Hepatocellular carcinoma

HCG Human chorionic gonadotropin

HCV Hepatitis C virusHDV Hepatitis delta virus

HIG Human immunoglobulin G
HIV Human immune deficiency virus

HRP Horseradish peroxidase

HS Highly significant

HSPGs Heparan sulphate proteoglycanes

I125 125 Iodine

IC Immune clearance ICU Intensive care unit

IFN Interferon

IFN- α/β Interferon alpha/betaIFN- γ Interferon gammaIgImmunoglobulin

IgG antibodies Immunoglobulin G antibody

IgM Anti-HBcImmunoglobin M Antibody to hepatitis B coreIgMHBcAbImmunoglobulin M hepatitis B core antibody

List of Abbreviations (Cont...)

IHL Intra-hepatic lymphocytes

IL Interleukin INF Interferon

IQR Interquartile range

IRF Interferon regulatory factorIRMA Immunoradiometric assayIT Immune-tolerant carrier

LAM Lamivudine

LC Low replicative phase

Ldt Telbivudine

LHB Large hepatitis B proteins

LN Lymph node

MDA5 Melanoma differentiation associated gene 5

mDC Myeloid dendritic cell

MEIA Microparticle Enzyme Immunoassay

MHB Middle hepatitis B proteins

MHC Major histocompatibility complex

MIA Magnetic immunoassay

MIP Macrophages inflammatory protein

mRNA messenger Ribonuclic acid

NAT
 Nucleic acid testing
 NC
 Negative control value
 NF- κβ
 Nuclear factor- κβ
 NK
 Natural killer cell
 NKT
 Natural killer T cell

NR Nonreactive
NS Non significant
OD Optical densieties
ORF Open reading frame

PCR Polymerase chain reaction

List of Abbreviations (cont...)

PD-1 Programmed death-1

PDL1 Programmed death ligand-1

PEI Paul Ehrlish Institute
PEG-IFN Pegylated interferon

PRR Pattern recognition receptor

qHBsAg Quantitative hepatitis B surface antigen

RIG-I Retinoic acid-inducible gene I

OT Quantitative technique

RFLP Restriction fragment length polymorphism

RIA Radioimmunoassay
RLU Relative light unit
RNaseH Ribonuclease

RT Reverse transcriptase

S Significant

SD Standard deviation

SHB Small hepatitis B proteins

SPSS Statistical package for social science

SVR Sustained virologic response

T4 Thyroxin

TCR T cell receptor

TH T helper

TLRs Toll-like receptors
TNF Tumer necrosis factor

Total Anti-HBc Total hepatitis B core antibody

TP Terminal protein

TRAIL TNF-related apoptosis-inducing ligand

WHO World health organization

List of Tables

Table N	o. Title	Page	No.
Table (1):	Prevalence of HBsAg, HBsAb and free Neonatal, Childhood infection Worldw		
Table (2):	Stages of chronic HBV infection		49
Table (3):	Interpretation of serologic test rehepatitis B		
Table (4):	Discordant or unusual hepatitis B s profiles requiring further evaluation	_	
Table (5):	Advantages and disadvantages of H testing		
Table (6):	Hepatitis B tests and their uses	• • • • • • • • • • • • • • • • • • • •	71
Table (7):	The conversion of Fibro Test into st	ages	77
Table (8):	Convertion of acti test into stages		79
Table (9):	Demographic characteristics of the patients		
Table (10):	Liver Function Test Results amon patients	_	
Table (11):	Viral load among studied patients	• • • • • • • • • • • • • • • • • • • •	120
Table (12):	HBsAg Results by different Metho studied patients		
Table (13):	Statistical correlation studies among methods applied for HBsAg determined among positive samples	rminatio	n
Table (14):	Statistical correlation studies between results done by three methods appeach of AST,ALT and HBV DNA	plied and	d

List of Figures

Figure	No.	Title	Page No.
Fig. (1):		distribution of chronic	_
Fig. (2):		d drawing and electron marticle and surface antigen.	
Fig. (3):	Represe	entation of hepatitis B viru	us (HBV) genome
Fig. (4):	Domains of	HBV surface proteins	10
Fig. (5 a):	First the viru	us attaches to a liver cells i	membrane11
Fig. (6):	1	rticle releases its contents herase into the liver cell nu	
Fig. (7):	Transcripti	on	13
Fig. (8 a):	Assemble of	f 'live' copies of the virus	14
Fig. (9):	The Replica	tion cycle of HBV	16
Fig. (10):		mbly and release http:// Theme/HepB/virology. htm	
Fig. (11):		Activation of Innate an Necessary for HBV Control	-
Fig. (12):	•	ne/chemokine cascade thr cruit T cells	•
Fig. (13):	_	ulatory functions of hep (T) cells (Tan et al., 2008).	
Fig. (14):		e most potent APCs (Z	_
Fig. (15):		cilitate the Accumulation Liver (Iannacone et al., 20	

List of Figures

Figure	No.	Title	Page No.	
Fig. (16): Cellular immune responses to HBV40				
Fig. (17):	Replication	of T-cell Defects w Levels. Chronic infection	on/ animal	
Fig. (18): 1	HBV-specific	T-cell Tolerance	43	
Fig. (19):	Pathway Ma	Figure of How the B' ay Mediate the Exhaustion ells in Chronic HBV Infect	of Virus-	
Fig. (20):	Hepatitis B	surface antigen	56	
Fig. (21):		HBsAg		
Fig. (22):	Hepatitis B	core antibody	58	
Fig. (23):	_	titis B Virus Infection With plogic Course	-	
Fig. (24):		to Chronic Hepatitis pical Serologic Course		
Fig. (25):	HBV DNA		67	
Fig. (26):	Interpretatio	n of fibro test results	77	
Fig. (27):	Interpretatio	n of acti test results	78	
Fig. (28):	Competitive	, homogeneous immunoass	say98	
Fig. (29):	Two-site, no	oncompetitive immunoassay	ys100	
Fig. (30):	Gender distr	ribution among the studied p	patients119	
Fig. (31):	Receiver op	erating charachterstic curve	analysis124	
Fig. (32):	showing the	perating charachterstic curve diagnostic performance di Architect	of HBsAg	

Introduction

Hepatitis B virus (HBV) infection is a major global health problem. It is one of the leading causes of both liver cirrhosis and hepatocellular carcinoma, and is responsible for more than 500,000 deaths per year (*Sorrell et al.*, 2009).

Chronic HBV carriers are the main source of HBV infection in the population. Thus, the detection of HBV infection in pregnant women and blood donors is required to prevent spread of the infection (*Lee et al.*, 1998).

Hepatitis B surface antigen (HBsAg) is a major envelope protein of HBV, and can serve as an epitope and provide the host with immunity(*Hsu et al.*, 1997).

HBsAg is one of the first serum markers to appear during the course of HBV infection and can be detected 2 to 8 weeks beforebiochemical evidence of liver dysfunction and the onset of jaundice.HBsAg is cleared within a few months in self-limiting illness.If HBsAg persists for more than 6 months, spontaneous clearanceis very improbable and the infected individual is considered achronic HBVcarrier(*Weber et al.*, 1993).

Among the many commercially licensed HBsAg assays available, enzyme-linked immunosorbent assays(ELISA) are currently the most frequently and to a solid phase and a second labelled anti-HBs to detect the captured antigen. Despite

the high-level performance of screeningassays, transfusion-associated HBV infection is still reported. To reduce the residual risk of transfusion-associated hepatitis B, the sensitivity of HBsAg screening assays is continuously improved (*Hoofnagle*, 1990).

Antiviral agents such as lamivudine and interferon- α (IFN- α) have been used as standard therapies for the treatment of chronic hepatitis B, and new drugs have been or are being developed to treat refractory mutant viral infections(*Cuestas et al.*, 2010). Quantitative measures of HBsAg level in serum are important for monitoring response to anti-viral treatment during the management of patients with a chronic HBV infection(*Jung et al.*, 2010).