Orthopaedic Interventions For Treatment of Lower Limbs deformities in Cerebral Palsy Patients

Essay Submitted For
Partial Fulfillment of Master Degree in Orthopaedic Surgery

By **Hossam Afifi Abd El Maksoud Mohamed**

M.B.B.CH.,

Supervised by

Prof. Dr. Mohamed Ahmed Maziad

Professor of Orthopaedic & spine Surgery
Ain Shams University

Dr. Maged Mohamed Samy

Assist prof. of Orthopaedic Surgery
Ain Shams University

Faculty of medicine Ain shams university

Contents

	Page
\- Introduction.	١
۲- Historical review.	٦
۳- Aetiology.	١.
٤- Classification.	1 \
°- Pathology.	77
٦- Diagnosis & Evaluation.	7 7
V- Management.	٧٦
۹- Summary.	1 2 .
\ - References.	1 £ £
\\- Arabic Summary	

Aim of the work

The aim of this work is to review the literature related to the different surgical and non surgical techniques used for correction of the common lower limb deformities in cerebral palsy patients.

الملخص العربي

أول من وصف الشلل المخي, جراح عظام يدعى وليام جيمس ليتل في عام ١٨٦٢. على انه اضطراب حركي ناتج عن إهانة (ثابته) غير تدريجيه على الدماغ النامية.

الشلل المخي هو اضطراب يؤثر على تطور الحركة والثبات الذي يعتقد أن تنشأ من الاضطرابات غير التدريجيه في الدماغ النامية للجنين أو الرضيع. و بالإضافة إلى الاضطرابات الحركية التي تميز الشلل الدماغي ، التي تحد من أنشطة المريض ، فالافراد المصابين بالشلل الدماغي في كثير من الأحيان يعانون الصرع ، ومشاكل العضلات والعظام الثانوية ، واضطرابات الإحساس والإدراك ، والمعرفه ، والاتصال ، والسلوك.

وحين وصف الجراح" ليتل " لأول مرة الشلل المخي ، أنسب السبب لصدمة الولادة . وقد استمر هذا لعدة عقود ، ولكن التطورات الأخيره في إدارة الأطفال حديثي الولادة ورعاية التوليد لم تظهر انخفاضا في نسبة الشلل المخي .

ويعد الشلل المخي هو الإعاقة الجسدية الأكثر شيوعا في مرحلة الطفولة ، التي تحدث في ٠٠٠ ك٠٠ ككل ١٠٠٠ مولود حي وعلى الرغم من أن العدد الإجمالي للأطفال المصابين بالشلل المخي ظلت مستقرة أو زادت بصورة طفيفة منذ عام ١٩٧٠ ، كان هناك ارتفاع ثابت في نسبة الشلل المخي المرتبط بالمواليد المبتسرين والخدج جدا. و ينبغي التمييز بين أسباب الشلل المخي المعروفه ما إذا كان قبل الولادة ، وفترة ما حول الولادة أو بعد الولادة - وعوامل الخطر أو العوامل المرتبطه بها ويعرف الكثير عن عوامل الخطر تلك التي وحدها او مجتمعة ، قد تؤدي بشكل غير مباشر الى الشلل المخي .

ويعد الشلل المخي في جوهره اضطراب في الحركة و التوازن. فالطفل ذات الاضرابات في العضلات وردود الفعل ، يتأخر في تحقيق الخطوات التنموية ، ولا يمكنه التحكم في التوازن أو الحركه. فهناك ضعف في العضلات ، تشنج ، وفقدان التنسيق ، واستمرار ردود الفعل البدائية وهذه تتدخل في تطور التحكم في الحركه الجسيمة والخفيفه. وعلاوة على ذلك ،فان ردود الفعل

المتقدمه و وضع الجسم لتحقيق التوازن والاتزان و التي هي شرط مسبق للجلوس والمشي يتم التأخر فيه أو غير موجود. الخرق ، و الذي يعرف بأنه عدم القدرة على تخطيط وتنفيذ وظيفة الحركة ، موجود. على الرغم من الإحساس السطحي عادة طبيعي ، فالإحساسات القشرية ، الحركة اللاإرادية للجسم وأعضاءه ، والإحساس بالحركة قد يكون ضعيف.

يتم تعريف التشنج بأنه زيادة في المقاومة الفسيولوجية للعضلات للحركة السلبيه. انها جزء من متلازمة الخلايا العصبية الحركية العليا وتتميز بزيادة رد الفعل ،و الارتجاج ، و ردود الفعل الباسطه الأخمصيه ، وردود الفعل البدائية. ويعد الشلل المخي التشنجي هو الشكل الأكثر شيوعا من الشلل المخي . ويعد ما يقرب من ٧٠ ٪ إلى ٨٠ ٪ من الأطفال المرضى بالشلل المخي من النوع التشنجي .

ويصنف الشلل المخي حسب نوع اضطراب الحركة المتواجده وحسب التوزيع الطوبوغرافي. والشلل الدماغي التشنجي هو حتى الآن الأكثر شيوعا، وربما يأتي في صورة شلل نصفي او شلل مزدوج أو شلل رباعي، جميع الأطفال الذين يعانون من شلل نصفي يمشون بشكل مستقل، ومعظم الأطفال الذين يعانون من شلل مزدوج تشنجي يمكنهم المشي ولكن بواسطه مساعدات خارجية، والأطفال الذين يعانون من شلل رباعي تشنجي لا يمكنهم عادة تحقيق المشي الوظيفي.

تحدث التغيرات في العظام والمفاصل في مرضى الشلل المخي نتيجة عن تشنجات العضلات والانكماشات، العمود الفقري ومفاصل الطرف السفلي هي الاكثر شيوعا تضررا. فزيادة الانثناء المتزايد وتقارب مفصل الفخذ يؤدي الى تشوه وانعواج خارجي لعنق عظمة الفخذ وخلخه وتشوه برأس عظمة الفخذ وخلع للمفصل وتكوين حق كاذب. أما في مفصل الركبه يعد الانكماش الانثنائي وتجزء الرضفه هم التشوهات الاكثر شيوعا. ويمكن أيضا أن يحدث تقوس خلفي للركبه نتيجه لانكماش عضله الفخذ الاماميه. والتشوه الانعواجي الداخلي والخارجي للقدم والكاحل المتزايد مرتبط بحدوث تشوه وخلخله بالمفصل الثالوثي القاربي. فان التعرف المبكر على التشوه التدريجي في المرضى الذين يعانون الشلل المخي يسمح بالعلاج والوقايه في الوقت المناسب من حدوث تغير جعى.

List of abbreviations

СР	Cerebral palsy
VLBW	Very low birth weight
CNS	Central nervous system
UMNS	Upper motor neuron syndrome
MRI	Magnetic resonance imaging
СТ	Cumputerised tomography
AI	Acetabular index
CEA	modified center-edge angle
MI	migration index
NSA	Neck shaft angle
EEG	Electroencephalogram
EMG	Electromyography
AFOs	ankle-foot orthoses
BTX-A	Botulinum toxin A
SDR	Selective dorsal rhizotomy
VDRO	femoral varus derotation osteotomy
KAFO	knee ankle foot orthosis

List of figures

No.	Item	Page
١	A patient with spastic quadriparesis	۳۱
۲	A diagram showing anatomical forms of cerebral palsy	٣٢
٣	The Thomas test	٤٣
٤	The Staheli test	٤٤
٥	Ely test	٤٤
٦	Hamstring traction test with patient supine	٤٥
٧	Tibial torsion angle	٤٦
٨	Metatarsal adduction deformity	٤٨
٩	Radiographic measurements of hip subluxation in cp	٥٢
١.	Reimer's Migration Index	٥٣
11	Lateral radiograph of a patient with pes valgus	00
١٢	Patient with cerebral palsy during a motion data collection	٦١
١٣	adduction contracture coxa valga, mild dysplasia, subluxation hip	٦٥
١٤	A 7-year-old boy with diplegia	٦٦
10	Radiographs showing substantial changes in the right hip	٦٨
١٦	A Fourteen-year-old boy who is minimally ambulatory	٦٩
١٧	Bilateral severe equinus contracture in a child with cp	٧.
١٨	Equinovarus deformity in a o-year-old boy	٧١
19	Patient with spastic diplegia and pes valgus	٧٢
۲.	Hallux valgus in a \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٧٣
۲۱	An example of a common spastic diplegic gait pattern	٧٤

List of figures (cont.)

No.	Item	Page
77	Knee extension brace	Λź
۲ ٤	shelf acetabular augmentation	97
70	Chiari pelvic osteotomy	97
77	pelvic osteotomies	٩٨
77	Proximal femoral resection-inter position	99
۲۸	Surgical approach for iliopsoas recession	1.7
۲٩	Adductor longus tenotomy	١٠٤
٣٠	Posterior transfer of the hip adductors to ischium	١٠٤
٣١	varus derotational osteotomy of hip	١٠٦
٣٢	Medial hamstring lengthing	١٠٨
٣٣	Proximal hamstring release	11.
٣٤	A digram showing distal femoral osteotomy	111
٣٥	distal femoral rotational osteotomies	111
٣٦	Technique for distal rectus femoris transfer	110
٣٧	Bilateral rotational osteotomies of the tibia	117
٣٨	Radiographs demonstrating tibial rotational osteotomy	١١٨
٣٩	Lengthening of the gastrocnemius by the Vulpius technique	١٢.
٤٠	Distal recession of the gastrocnemius, the Strayer technique	171
٤١	Tongue-in-groove lengthening of the gastrocnemius	171
٤٢	Drawings demonstrating the triple-cut technique of Hoke	177
٤٣	Percutaneous Achilles Tendon Lengthening	177

List of figures (cont.)

No.	Item	Page
٤٤	Z-lengthening of the Achilles tendon	١٢٣
٤٥	Intramuscular lengthening of the posterior tibial tendon	170
٤٦	split transfer of posterior tibial tendon for varus deformity	١٢٦
٤٧	Split Anterior Tibialis Tendon Transfer	177
٤٨	Closing wedge osteotomy of calcaneus for varus heel	179
٤٩	Grice subtalar arthrodesis	١٣١
0.	extraarticular subtalar arthrodesis using screw and cancellous bone chips	188
٥١	Medial calcaneal sliding osteotomy for pes valgus	١٣٤
٥٢	crescentic osteotomy of calcaneus	170
٥٣	Hallux valgus in a \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	١٣٦

List of tables

No.	Item	Page
١	Topographical involvement of the motor disorder in cp	19
۲	Classification of movement disorder in cerebral palsy	۲.

Acknowledgement

First of all, my thanks are to "ALLAH" the kind and the merciful, who gave me the power to perform and complete this work.

It is a great honor to express my deepest gratitude and appreciation to **prof. Dr. Mohamed Ahmed Maziad**, Professor of orthopedic and spine surgery, Faculty of Medicine, Ain Shams University, for his brotherhood guidance, patientce, supervision, helpful criticism and instructions during the progress of this work giving me much of his time, effort and knowledge.

I wish also to express my great appreciation to Ass. Prof. Dr. Maged Mohamed Sami, assistant professor of orthopedic surgery, Faculty of Medicine, Ain Shams University, for his sincere guidance, kind supervision, valuable advice, suggestions and great help.

Hossam Afifi

Introduction

Cerebral palsy (CP) was first described in 'ATT by an orthopedic surgeon named William James Little. A motor disorder resulting from a non-progressive (static) insult to the developing brain '.

Cerebral palsy is a disorder affecting the development of movement and posture that is believed to arise from non progressive disturbances in the developing fetal or infant brain. In addition to the motor disorders that characterize cerebral palsy, which limit a patient's activities, individuals with cerebral palsy often display epilepsy, secondary musculoskeletal problems, and disturbances of sensation, perception, cognition, communication, and behavior '.

When "little "first described CP, he attributed the cause of CP to birth trauma and this view has persisted for several decades. Recent advances in neonatal management and obstetric care have not shown a decline in the incidence of CP "

٠.

Cerebral palsy is the commonest physical disability in childhood, occurring in Y, to Y, per Y... live births. Although the total number of children with cerebral palsy has remained stable or increased slightly since Y, there has been a consistent rise in the proportion of cerebral palsy associated with preterm and very preterm births. Known causes of cerebral palsy — whether prenatal, perinatal or postnatal, must be distinguished from risk factors or associations. Much is known about such risk factors which, alone or in combination, may indirectly result in cerebral palsy *.

Cerebral palsy is essentially a movement and balance disorder. The child has abnormalities of muscle tone and reflexes, is delayed in achieving developmental milestones, and cannot control his or her balance or movements. There is muscle weakness, spasticity, loss of coordination, and persistence of primitive reflexes interfering with the development of gross and fine motor control. Moreover, advanced postural reactions for balance and equilibrium that are a prerequisite for sitting and walking are delayed or nonexistent. Apraxia, defined as the inability to plan and execute motor function, is present. Even though superficial

sensation is generally normal, cortical sensation, proprioception, and sensation of movement may be impaired °.

Spasticity is defined as an increase in the physiologic resistance of muscle to passive motion. It is part of the upper motor neuron syndrome characterized by hyperreflexia, clonus, extensor plantar responses, and primitive reflexes. Spastic CP is the most common form of CP. Approximately V·½ to A·½ of children who have CP are spastic 3.

CP is classified by the type of movement disorder present and by its topographical distribution. Spastic CP is by far the most common and may present in hemiplegic, diplegic or quadriplegic form. All children with hemiplegia walk independently. Most children with spastic diplegia walk but may need external aids, and children with spastic quadriplegia do not usually achieve functional walking v.

Bone and joint changes in cerebral palsy result from muscle spasticity and contracture. The spine and the joints of the lower extremity are most commonly affected. Progressive hip flexion and adduction lead to windswept deformity, increased femoral anteversion, apparent coxa valga, sublaxation, deformity of the femoral head, hip dislocation, and formation

Introduction

of a pseudoacetabulum. In the knee, flexion contracture, patella alta, and patellar fragmentation are the most commonly seen abnormalities. Recurvatum deformity can also develop in the knee secondary to contracture of the rectus femoris muscle. Progressive equinovalgus and equinovarus of the foot and ankle are associated with rocker-bottom deformity and subluxation of the talonavicular joint. Early recognition of progressive deformity in patients with cerebral palsy allows timely treatment and prevention of irreversible change [^].

٤