

Ain Shams Faculty of medicine Anesthesia & Intensive care Department

Metabolic Encephalopathy in intensive care unit Essay

Submitted By

Mahmoud Ahmed Yassin Hafez

M.B.B.C.H

For partial fulfillment of Master Degree in Intensive care

Supervised By Prof. Dr.Mohamed Abdel Khalek Mohamed Ali

Prof. Of anesthesiology & intensive care medicine Ain Shams Faculty of medicine

Dr. Sherif Farouk Ibrahim

Assist. Prof. of anesthesiology & intensive care medicine Ain Shams Faculty of medicine

Dr. Hany Victor Zaki

Lecturer of anesthesiology & intensive care medicine Ain Shams Faculty of medicine

> Faculty of Medicine Ain Shams University 2012

Acknowledgment

I wish to express my sincere thanks and deepest gratitude to Prof. Dr. Mohamed Abdel Khalek Mohamed Ali, Prof. of anesthesialogy & intensive care medicine, faculty of medicine, Ain Shams University who taught me the milestones of this research work, and was abundantly helpful and offered invaluable assistance, support and guidance. Also I would like to thank him for his patience and his elegant teaching notes that helped me a lot. I am deeply thankful to Dr. Sherif Farouk Ibrahim, Assist. Prof. anesthesialogy & intensive care medicine ,Faculty of Medicine ,Ain Shams University and Dr. Hany Victor Zaki, Lecturer of anesthesialogy & intensive care medicine, faculty of medicine, Ain Shams University for their continuous supervision, their suggestions, advice and gracious assistance during this work.

Index

Index

1	List of Tables	III
2	List of Figures	IV-V
3	Abbreviations	VI-VII
4	Aim of the Work	1
5	Pathophysiology of Metabolic Encephalopathy	2-18
6	Causes of Metabolic Encephalopathy	19-32
7	Management of metabolic Encephalopathy	33-42
8	Metabolic Encephalopathy in special condition	43-97
9	Summary & conclusion	98-99
10	References	100-115
11	Arabic Summary	116-117

List of Tables

List of Tables

Table 1	Major causes of metabolic encephalopathies	19
Table 2	EEG Patterns in Encephalopathy and Coma	40
Table 3	Immediate management of patients with an Encephalopathy of uncertain cause	42
Table 4	Risk factors of Hepatic encephalopathy	49
Table 5	West Haven Criteria for Semi-quantitative Grading of Mental Status	52
Table 6	Glasgow Coma Scale	53
Table 7	Advantages and disadvantages of diagnostic tests for hepatic encephalopathy	56
Table 8	General Measures of Uremic Encephalopathy	75
Table 9	Important Pathophysiological Mechanisms of Septic Encephalopathy	84
Table 10	Treatment of hyponatremia	95

List of Figures

List of Figures

Figure 1	Glucose and ketone body transporters with hypoxia	7
Figure 2	Altered metabolism of excitatory amino acids during hypoglycemic coma.	10
Figure 3	Hypoglycemia causes an increase in tissue aspartate and decrease in glutamate, while both amino acids flood the extracellular space of the brain.	11
Figure 4	Glutamine forms predominantly in the astrocyte, is pumped out, and taken up by presynaptic neurons where it is converted to glutamate.	15
Figure5	Hypothesis of the multifactorial nature of hepatic encephalopathy. Various neurotoxins and NTs act independently or perhaps synergistically to cause astrocyte swelling and subsequent astrocyte dysfunction.	44
Figure 6	MR of the brain in a patient exhibiting grade II HE, and repeated 6 weeks later shows hyperintense focal white matter lesions that decrease in volume after the resolution of HE	55

Figure 7	Electroencephalographic findings in a patient with uremic encephalopathy, showing generalised slowing with an excess of delta and theta waves and bilateral spikes	75
Figure 8	Approach to Hyponatremic Patient	94

Abbreviation

Abbreviation

AAA	Aromatic amino acids
AMP	Adenosine monophosphate
ARF	Acute renal failure
ATP	Adenosine triphosphate
BBB	Blood brain barrier
BCAA	Branched-chain amino acids
BUN	Blood urea nitrogen
CMRglu	Cerebral metabolic rate for glucose
CRF	Chronic renal failure
CSF	Cerebrospinal fluid
CT	Computed tomography
DS	Disaccharides
EEG	Electroencephalogram
ENOS	Endothelial nitric oxide synthase
GABA	Gamma-amino butyric acid
GCS	Guanidine compounds
GLUT-1	Glucose transporter-1
G6P	Glucose-6-phosphate
НЕ	Hepatic encephalopathy
HIF-1	Hypoxia-inducible factor-1
НК	Hexokinase
IL	Interleukins

INOS	Inducible nitric oxide synthase
LOLA	Lornithine Laspartate
MCT1	Moncarboxylate-1
ME	Metabolic encephalopathy
MRI	Magnetic resonance imaging
NMDA	N-methyl-D-aspartate
PDE	Progressive dialysis encephalopathy
PE	Pancreatic encephalopathy
PFK	Phosphofructokinase
PLA2	phospholipase A2
PTH	Parathyroid hormone
RAS	Reticular activating system
ROS	Reactive oxygen species
SAE	Sepsis- associated encephalopathy
SBP	Spontaneous bacterial peritonitis
SE	Septic encephalopathy
SIRS	Systemic inflammatory response syndrome
TNF- α	Tumor necrosis factor-α
TPN	Total parenteral nutrition
UE	Uremic Encephalopathy
WE	Wernicke's encephalopathy

Aim of the Work